Дизельный двигатель что это

Дизельный двигатель: устройство, принцип работы

Вторым по популярности двигателей внутреннего сгорания является дизельный двигатель, который раньше устанавливался только на грузовые машины. КПД дизеля больше, чем у самого распространенного ДВС — бензинового. При более высоком коэффициенте полезного действия, дизель расходует топлива намного меньше. Такие преимущества инженеры-конструкторы автомобильной промышленности смогли сделать за счет уникальной конструкции.

История создания дизельного двигателя

Двигатели внутреннего сгорания бензинового типа постоянно модифицируются. Конструкторы добиваются улучшения эксплуатационных технических характеристик. Даже с новым прямым впрыском бензиновый ДВС выдает 30% КПД, а дизельный ДВС без турбонаддвува выдает 40% КПД, с турбонаддувом — около 50%.

Поэтому дизельные моторы становятся все более популярными и в Европе, и, вообще, по миру. Бензин дорожает чаще, чем дизтопливо. Все больше людей перед покупкой автомобиля оценивают, какой расход у этого авто. Основной существенный минус дизельных моторов — это большие габариты и большой вес. Поэтому они устанавливались только на грузовики.

Изготовление и обслуживание диз двигателя сложнее, потому что конструкция должна быть такой, чтобы все детали были сделаны с высокой точностью.

История создания

Дизельный двигатель, он же дизель — это поршневой двигатель внутреннего сгорания, принцип работы которого основан на самовоспламенении топлива, распыляющегося сжатым и горячим воздухом. До конца 20 века такой тип ДВС устанавливался на корабли, тепловозы, автобусы, грузовые машины, трактора. С конца 20 века после успешных испытаний начал массово устанавливаться на легковые авто.

По информации из википедии, в 1824 году Сади Карно придумал и сформулировал идею цикла Карно, суть которого заключалось возможности доводить топливо до температуры самовоспламенения резким сжатием.

Спустя 66 лет, Рудольф Дизель в 1890 году предложил реализовать эту идею на практике. 23 февраля 1892 года получил патент (разрешение) на свой двигатель, а в на следующий год выпустил брошюру по своего агрегату. Он запатентовал несколько вариантов.

Успешное испытание дизель-мотора удалось сделать только 28 января 1987 года (до этого попытки были неудачными). После этого Р.Дизель начал продавать лицензии на свое изобретение.Хоть и КПД, и удобство использования нового двигателя было на высоко уровне по сравнению с паровыми агрегатами, новые дизель-устройства были большими по габаритам и тяжелыми (они были больше и тяжелее паровых машин тех времен).

Первоначальной задумкой было то, что топливом должна была быть каменноугольная пыль. Но после испытаний такого вида топлива, оказалось, что каменноугольная пыль очень быстро изнашивает детали двигателя из-за своих абразивных свойств и из-за золы, которая получалась в результате сгорания этой пыли.

Далее, в качестве топлива было использовалось растительное масло и легкие нефтепродукты. Именно на этих видах топлива, испытания ДВС Дизеля прошли успешно.

Инженер Экрой Стюард построил в 1896 году работающий двигатель — полудизель. В этой варианте конструкции ДВС было решено, чтобы воздух втягивался в цилиндр, после чего сжимался поршнем и нагнетался в конце такта сжатия в емкость, в которую распылялось топливо. Чтобы запустить такой мотор, емкость нагревалась лампой снаружи и после запуска двигатель работал сам. Экрой Стюард экспериментировал со сжатием топлива и воздуха в цилиндре. Он хотел исключить свечи зажигания.

Русские в изобретениях не отставали. Вне зависимости от успехов создания ДВС Дизелем, в 1989 году в Петербурге на Путиловском заводе инженер Густав Тринклер придумал и создал первый в мире бескомпрессорный нефтяной двигатель высокого давления, то есть это был двигатель с форкамерой (форкамера — это предварительная камера сгорания, которая по объему составляет 30% от общего объема камеры сгорания). Такой двигатель получил название «Тринклер-мотор».

После сравнения немецкого варианта Дизель-мотора и русского Тринклер-мотора, русский вариант оказался более эффективным. В Тринклер-моторе использовалась гидросистема для нагнетания и распыления топлива — это позволило отказаться от установки дополнительного воздушного компрессора и позволило увеличить число оборотов вала двигателя. В русском варианте в конструкции двигателя не устанавливался воздушный компрессор. Тепло подводилось медленно и дольше, по сравнению с немецким мотором Рудольфа Дизеля. Тринклер-мотор был проще и эффективнее. Но, теми, у кого были лицензии на Дизель-двигатели Рудольфа и Нобелями были вставлены «палки в колеса», чтобы остановить распространение конкурентного варианта мотора. В 1902 году работы по созданию Тринклер-мотора были остановлены.

В 1989 году Эммануил Нобель получил лицензию на двигатель Рудольфа Дизеля. Двигатель был доработан и теперь он мог работать на нефти, а не на керосине. В 1899 году Механический завод «Людвиг Нобель», расположенный в Петербурге, начал массовый выпуск таких моторов. В 1900 году в Париже на Всемирной выставке дизельный ДВС получил ГРАН-ПРИ. Перед Всемирной выставкой в Париже, появилась новость, что Нобелевский завод в Петербурге выпускает ДВС, которые работают на сырой нефти. Такой ДВС в Европе начали называть «Русский дизель». Русский инженер по фамилии Аршаулов первым сконструировал и внедрил в систему топливный насос высокого давления (ТНВД). Приводом для ТНВД служил сжимаемый поршнем воздух. ТНВД работал с бескомпрессроной форсункой.

В 20-е годы ХХ века, Роберт Бош доработал встроенный ТНВД. Это устройство используется и в наши дни. Бош также усовершенствовал бескомпрессорную форсунку.

С 50-60 годов 20 века дизельный моторы успешно устанавливаются на грузовые машины и автофургоны.

С 70-х годов из-за удорожания бензинового топлива, на дизельные моторы стали обращать внимание производители легковых автомобилей.

В настоящее время, почти каждая марка авто имеет модификацию с дизельным аппаратом под своим капотом.

Устройство системы дизельного двигателя

Основными элементами диз мотора являются:

  • цилиндро-поршневая группа (цилиндры, поршни, шатуны);
  • топливные форсунки;
  • впускные и выпускные клапана;
  • турбина;
  • интеркулер.

Современный дизельный двигатель в разрезе

Принцип работы дизельного мотора

Основная особенность дизельного ДВС в том, что он воспламенение топливно-воздушной смеси в камерах сгорания происходит за счет сжатия и нагрева. Распыление диз топлива осуществляется через форсунки.

Подача солярки осуществляется только в момент, при котором воздух максимально сжат и имеет максимальную температуру.

Когда воздух горячий, дизельное топливо легко воспламеняется. Перед попаданием топлива в камеры сгорания цилиндров ДВС, оно проходит очищающие фильтры, которые очищают от механических примесей, которые быстро нанесли бы ущерб всему устройству.

Порядок работы дизельной системы:

    1. Воздух подается через впускной клапан при движении поршня вниз.
    2. Далее поршень поднимается вверх и сжимает воздух в 20 раз. Давление в этот момент составляет 40 килограмм на 1 сантиметр. Температура воздуха в этот момент достигает 500 градусов по Цельсию.
    3. Когда воздух сжат и нагрет, форсунки этого цилиндра впрыскивают и распыляют топливо. За счет очень сильно нагретого воздуха дизтопливо воспламеняется. Такой способ работы исключает присутствие в системе свечей зажигания. Также в дизельных агрегатах отсутствует система зажигания. Процесс самовоспламенения солярки с воздухом от свечи накаливания.

    Также, в устройстве нет дроссельной заслонки, благодаря чему обеспечивается большой крутящий момент. Но, число оборотов в это время находится на низком уровне.За один цикл работы дизеля форсунки могут подавать топливо несколько раз.

  1. При воспламенении горючей смеси, взрывная волна толкает поршень вниз. Поршень, который соединен с коленвалом посредством шатуна и вращает коленвал.
  2. Далее, от нижней мертвой точки (НМТ) поршень движется вверх и выталкивает отработанные газы через выпускные клапана.Такой процесс в работе двигателя называют циклом.

Дополнительные компоненты двигателя

Помимо основных деталей, которые обязательно присутствуют в конструкции двигателя, есть еще дополнительные детали и узлы, которые улучшают характеристики и работу ДВС.

Принцип работы турбины

Турбина — это устройство, которое создает дополнительного нагнетание топлива. Двигатель с турбиной имеет большую производительность.

Идея создания турбины появилась при обнаружении такого факта, что при движении поршня вверх, солярка не успевает полностью сгорать.

С помощью турбины, сгорание топлива в цилиндрах происходит до конца, за счет чего уменьшается расход топлива и увеличивается мощность ДВС.

Турбонаддув, он же турбонагнетатель состоит из:

  • подшипники — служит опорой дает возможность вращаться валу;
  • кожух на турбине;
  • кожух на компрессоре;
  • стальная сетка.

Цикл работы турбонаддува:

  1. Компрессор создает вакуум и всасывается воздух внутрь системы.
  2. Ротор турбины передает вращение ротору.
  3. Интеркулер охлаждает воздух.
  4. Через впускной коллектор осуществляется подача воздуха, предварительно воздух проходит степени очистки (воздушные фильтры). После поступления воздуха, впускной клапан закрывается.
  5. Отработанные газы движутся через турбину ДВС и создают давление на ротор.
  6. В этот момент скорость вращения турбины вала турбины очень высока, достигает 1500 оборотов в секунду. От этого начинает вращаться ротор компрессора.

Цикл далее повторяется.

При охлаждении воздуха, его плотность увеличивается. Если плотность воздуха стала больше, значит можно закачать воздух большим объемом. Чем больший поток воздуха подается в камеру сгорания, тем лучше сгорает топливо.

Интеркулер и форсунка

При сжатии плотность воздуха и температура увеличиваются. Это негативно сказывается на межремонтном периоде деталей двигателя. В связи с чем была разработано устройство, которое охлаждает горячий воздушный поток.

В зависимости от модификации дизельных двигателей, в цилиндре топливо может распыляться одной или двумя форсунками.

Форсунки дизеля работают в импульсном режиме.

Вывод

За счет постоянных инженерных внедрений и испытаний, современные дизельные двигатели выдают очень хорошие технические характеристики. Качество сгорания отличное за счет использования турбонагнетателя. Качество сгорания, примерно, выше в 2 раза, чем у бензинового двигателя.

В последние годы идет постоянное усовершенствование не только для улучшения эксплуатационных показателей, но и за счет современных требований мировых экологов. Сначала было требование двигатели Евро-2, потом 3, 4, 5.

Видео

В этом видео показывается принцип работы дизеля.

Строение системы дизельного двигателя.

Принцип работы турбонагнетателя (турбонаддува, турбины).

Отличия ДВС евро 5 от евро 4.

Дизельные двигатели

Конструкционные особенности дизельных двигателей

Дизельный двигательный агрегат – одна из разновидностей поршневых силовых установок. По своему исполнению он почти ничем не отличается от бензинового двигателя внутреннего сгорания. Там имеются те же цилиндры, поршни, шатуны, коленвал и прочие элементы.

Действие «дизеля» основано на свойстве самовоспламенения дизтоплива, распыляемого в пространстве цилиндра. Клапаны в таком моторе значительно усилены — это необходимо было сделать для того, чтобы агрегат был устойчив к повышенным нагрузкам в течение длительного времени. Из-за этого вес и размеры «дизеля» больше, чем у аналогичной бензиновой установки.

Есть и существенное отличие между дизельными и бензиновыми механизмами. Оно заключается в том, как именно образуется топливовоздушная смесь, каков принцип ее воспламенения и горения. Первоначально в работающие цилиндры направляется обычный чистый воздушный поток. По мере сжатия воздуха он прогревается до температуры около 700 градусов, после чего форсунки впрыскивают горючее в камеру сгорания. Высокая температура способствует моментальному самовозгоранию топлива. Горение сопровождается быстрым нагнетанием высокого давления в цилиндре, поэтому дизельный агрегат издает характерный шум в процессе работы.

Запуск дизельного двигателя

Пуск «дизеля» в холодном состоянии осуществляется благодаря свечам накаливания. Это нагревательные электроэлементы, интегрированные в каждую из камер сгорания. При включении зажигания свечи накаливания нагреваются до сверхвысоких температур = около 800 градусов. При этом разогревается воздух в камерах сгорания. Весь процесс занимает несколько секунд, а о готовности дизеля к запуску водителя оповещает сигнальный индикатор в панели приборов.

Подача электричества на свечи накаливания снимается автоматически примерно через 20 секунд после запуска. Это необходимо для обеспечения устойчивой работы холодного двигателя.

Устройство топливной системы дизельного мотора

Одной из самых важных систем двигателя, работающего на дизельном топливе, считается система подачи горючего. Ее главная задача – подача дизтоплива в цилиндр в жестко ограниченном количестве и только в заданный момент.

Основные компоненты топливной системы:

  • топливный насос высокого давления (ТНВД);
  • форсунки подачи горючего;
  • фильтрующий элемент.

Основное назначение ТНВД — подача горючего на форсунки. Он работает по заданной программе в соответствии с тем режимом, в котором функционирует мотор, и действиями водителя. Фактически, современные топливные насосы являются высокотехнологичными механизмами, которые автоматически управляют работой дизельного мотора на основании управляющих воздействий водителя.

В тот момент, когда водитель выжимает газовую педаль, он не меняет количество подачи горючего, а вносит изменения в работу регуляторов в зависимости от силы нажатия на педаль. Именно регуляторы изменяют количество оборотов двигателя и, соответственно, скорость машины.

Как отмечают специалисты ГК Favorit Motors, на легковых авто, кроссоверах и внедорожниках чаще всего устанавливают ТНВД распределительной конструкции. Они имеют компактные размеры, равномерно подают топливо в цилиндры и качественно работают на высоких оборотах.

Форсунка получает топливо от насоса и регулирует его количество перед тем, как перенаправить горючее в камеру для сгорания. На дизельные агрегаты устанавливают форсунки с распределителем одного из двух видов: шрифтовым либо многодырчатым. Иглы распределителей изготавливаются из высокопрочных жаростойких материалов, поскольку они работают в условиях высоких температур.

Топливный фильтр — это простой и, одновременно, один из важнейших компонентов дизельного агрегата. Его рабочие параметры должны в точности соответствовать конкретному типу двигателя. Назначение фильтра — отделение конденсата (для этого предназначено нижнее сливное отверстие с пробкой) и устранение лишнего воздуха из системы (используется верхний насос подкачки). На некоторых моделях авто предусмотрена функция электрического подогрева топливного фильтра — это позволяет упростить запуск дизеля в зимний период.

Виды дизельных агрегатов

В современном автомобилестроении используются два типа дизельных силовых установок:

  • двигатели с прямым впрыском;
  • дизели с раздельной камерой сгорания.

У дизельных агрегатов с прямым впрыском камера сгорания интегрирована в поршень. Горючее впрыскивается в пространство над поршнем, после чего направляется в камеру. Прямой впрыск топлива обычно используется на низкооборотных силовых установках с большим рабочим объемом, где имеются сложности с процессом воспламенения.

Более распространены сегодня дизельные моторы с раздельной камерой. Впрыск горючей смеси производится не в пространство над поршнем, а в дополнительную полость, которая имеется в головке цилиндра. Такой способ оптимизирует процесс самовоспламенения. К тому же такой тип дизеля работает с меньшим шумом даже на самых высоких оборотах. Именно такие двигатели сегодня устанавливают на легковых автомобилях, кроссоверах и внедорожниках.

В зависимости от конструктивных особенностей дизельный силовой агрегат работает в четырехтактном и двухтактном циклах.

Четырехтактный цикл подразумевает следующие этапы работы силового агрегата:

  • Первый такт – это поворот коленвала на 180 градусов. Благодаря его движению открывается впускающий клапан, в результате чего воздух подается в полость цилиндра. После этого клапан резко закрывается. Одновременно с этим при определенном положении открывается и выхлопной (выпускающий) клапан. Момент одновременного открытия клапанов называют перекрытием.
  • Второй такт — это сжатие воздуха поршнем.
  • Третий такт — начало хода. Коленвал поворачивается на 540 градусов, топливно-воздушная смесь воспламеняется и сгорает при соприкосновении с форсунками. Выделяющаяся при горении энергия поступает в поршень и заставляет его двигаться.
  • Четвертый такт соответствует повороту коленвала до 720 градусов. Поршень поднимается вверх и выбрасывает через выпускной клапан отработавшие продукты горения.

Двухтактный цикл обычно используется при запуске дизельного агрегата. Суть его заключается в том, что такты сжатия воздуха и начало рабочего процесса у него укорочены. При этом поршень выпускает отработавшие газы через специальные впускные окна во время своей работы, а не после того, как опустится вниз. После принятия исходного положения осуществляется продувка поршня, чтобы удалить остаточные явления от горения.

Преимущества и недостатки использования дизельных двигателей

Силовые агрегаты на дизельном топливе характеризуются высокой мощностью и коэффициентом полезного действия. Специалисты ГК Favorit Motors отмечают, что автомобили с дизельными агрегатами с каждым годом становятся все более востребованными в нашей стране.

Во-первых, благодаря особенностям процесса горения топлива и постоянному выхлопу отработавших газов, дизель не предъявляет строгих требований к качеству топлива. Это делает их и более экономичными и доступными в обслуживании. Кроме того, расход топлива у дизельного мотора меньше, чем у бензинового агрегата аналогичного объема.

Во-вторых, самовозгорание топливно-воздушной смеси производится равномерно в момент впрыска. Поэтому дизельные двигательные аппараты могут работать на пониженных оборотах и, несмотря на это, выдавать очень высокий крутящий момент. Такое свойство позволяет сделать транспортное средство с дизельным агрегатом намного легче в управлении, нежели авто с потреблением бензинового топлива.

В-третьих, в использованных газовых выхлопах дизельного мотора содержится гораздо меньше окиси углерода, что делает эксплуатацию таких авто экологичной.

Несмотря на свою надежность и высокий моторесурс, дизельные силовые агрегаты со временем выходят из строя. Самостоятельно проводить ремонтные работы мастера ГК Favorit Motors не рекомендуют, ведь современные «дизели» — это высокотехнологичные установки. И для их ремонта необходимы специальные знания и оборудование.

Специалисты автосервиса Favorit Motors – это квалифицированные мастера, которые прошли стажировку и обучение в учебных центрах заводов-производителей. Они обладают доступом ко всей технологической документации и имеют многолетний опыт ремонта дизельных агрегатов любых модификаций. В нашем техцентре имеется все необходимое оборудование и узкопрофильные инструменты для диагностики и ремонта дизельных моторов. Кроме того, услуги по восстановлению и ремонту «дизелей», оказываемые в ГК Favorit Motors, являются необременительными для кошельков москвичей.

Мастера автосервиса отмечают, что долговечность работы «дизеля» напрямую зависит от того, насколько своевременно и качественно проводится сервисное обслуживание. В техцентре Favorit Motors регламентное ТО выполняется в строгом соответствии с технологическими картами производителя и с использованием только высококачественных сертифицированных запчастей.

Дизельный двигатель

Дизельный двигатель, наряду с бензиновым, является одним из двух самых распространенных типов поршневых двигателей внутреннего сгорания. Принцип его работы базируется на самовоспламенении воздушно-топливной смеси, которая подается в камеры сжигания под давлением.

Благодаря этому горючее нагревается и самовоспламеняется, что является главным отличием дизельного двигателя от бензинового и выступает основной причиной всех конструктивных и эксплуатационных изменений в силовом агрегате этого типа, а также напрямую влияет на сферу применения и частоту его использования. В статье подробно рассматривается история создания и совершенствования дизельного двигателя, устройство и принцип работы подобного оборудования, а также его основные отличия и преимущества по сравнению с бензиновой силовой установкой.

История создания и совершенствования

Первые научные разработки, касающиеся возможности использовать для воспламенения горючего в тепловой машине сжатого до высокого давления топлива, были осуществлены в 20-30-х годах 19-го века. На практике этот принцип был реализован выдающимся немецким изобретателем и инженером Рудольфом Дизелем, который в 1892 году оформил патент на изобретение двигателя оригинальной конструкции, получивший название дизель-мотор в честь его создателя. Через 3 года документ был признан США. В течение нескольких лет Дизель зарегистрировал еще несколько патентов на различные модификации дизельного двигателя.

Первый работающий агрегат был изготовлен в конце 1896 года, а его испытания прошли практически сразу – 28 января следующего года. В качестве горючего первые дизельные двигатели использовали растительные масла и легкие нефтепродукты. Силовая установка практически сразу же стала показывать высокий КПД, будучи еще и очень удобной в эксплуатации. Но в первые годы после изобретения дизельные двигатели применялись, главным образом, в тяжелых паровых машинах.

Существенно расширить сферу практического использования дизельных агрегатов позволили два ключевых усовершенствования. Первое заключалось в применении в качестве топлива керосина, что первым использовал в 1898 году другой великий инженер того времени – родившийся в России швед Рудольф Нобель. Вторым серьезным рационализаторским решением стало изобретение топливного насоса высокого давления (ТНВД), который заменил используемый ранее для сжатия горючего компрессор.

Серьезный вклад в усовершенствования ТНВД внес в 20-е годы 20-го века Роберт Бош. Он изобрел и внедрил модель встроенного насоса и бескомпрессорной форсунки, применение которых привело к существенному уменьшению габаритов дизельного двигателя, что, в свою очередь, позволило устанавливать его сначала на общественный и грузовой транспорт, а во второй половине 30-х годов – впервые использовать на легковых машинах. Дальнейшие улучшения рассматриваемого агрегата, в частности использование специального дизельного топлива, позволили силовой установке на этом типе горючего успешно конкурировать с бензиновыми двигателями, постоянно увеличивая занимаемую долю рынка.

Отличие от бензинового двигателя

Главное отличие дизельного двигателя от бензинового было упомянуто выше. Оно состоит в отсутствии системы зажигания, что объясняется использованием принципа самовоспламенения топливно-воздушной смеси в результате нагнетания давления и вызванного этим нагрева горючего. Необходимо отметить несколько ключевых следствий разницы между рассматриваемыми типами силовых установок.

Главные положительные для дизельного двигателя моменты состоят в следующем. Во-первых, отсутствие системы зажигания делает конструкцию агрегата заметно проще, повышая надежность и долговечность. Во-вторых, компрессионное воспламенение топлива обеспечивает более полное и эффективное сгорание, в результате чего повышается КПД силовой установки и снижается количество вредных выбросов.

Основным негативным следствием указанного выше отличия между двигателями внутреннего сгорания выступают более существенные требования к прочности и качеству изготовления клапанов и других деталей дизельных агрегатов. Это связано с тем, что они эксплуатируются под серьезной нагрузкой, связанной с повышенным давлением топливно-воздушной смеси.

Устройство

И дизельный, и бензиновый агрегаты относятся к поршневым двигателям внутреннего сгорания, а потому имеют сходное устройство. Основными конструктивными частями силовой установки на дизельном топливе являются такие:

1. Блок цилиндров. Основа любого двигателя. Используется для размещения всех систем и узлов силового агрегата. Различаются по трем основным параметрам – числу цилиндров, схеме их расположения и способу охлаждения. Как правило, количество цилиндров является четным, максимальное их число составляет 16. Чаще всего встречаются двигатели с 2-я, 4-я, 6-ю или 8-ю цилиндрами.

Важным элементом рассматриваемого узла является так называемая ГБЦ или головка блока цилиндров. Она создает закрытое пространство, в котором происходит непосредственное сжигание топливной смеси.

2. Кривошипно-шатунный механизм. Основное назначение этого узла двигателя – преобразование перемещения поршня внутри гильзы, являющегося возвратно-поступательным, в движение коленвала, которое относится к вращательным. Главной деталью механизма считается коленвал, подвижно соединенный с блоком цилиндров, что обеспечивает вращение вала.

Другая важная деталь – маховик, который крепится к одному из концов коленвала. Его задача – передать крутящий момент к другим узлам транспортного средства. Ко второму концу коленвала крепится шкив и приводная шестерня топливно-распределительной системы.

3. Цилиндропоршневая группа. Включает в себя цилиндры или гильзы, поршни или плунжеры, шатуны и поршневые пальцы. Отвечает за процесс сжигания топлива с последующей передачей образовавшейся энергии для дальнейших преобразований. Камера сжигания представляет собой пространство внутри гильзы, которое с одной стороны ограничивается ГБЦ, а с другой — поршнем. Главное требование к цилиндропоршневой группе дизельного двигателя – герметичность, прочность и долговечность.

4. Топливно-распределительная система. Функциональное назначение – своевременная подача горючего в камеры сгорания и отвод из двигателя продуктов сжигания топливно-воздушной смеси. В дизельном агрегате основу системы составляют два насоса. Первый из них – низкого давления – отвечает за перемещение горючего из бака к двигателю.

Назначение второго – ТНВД – несколько шире и заключается в определении нужного количества и времени впрыска топлива, а также в обеспечении необходимого уровня давления в камере сгорания. Именно топливный насос высокого давления и соединенные с ним форсунки являются ключевыми элементами дизельного двигателя, обеспечивающими его впечатляющие эксплуатационные и технические параметры.

5. Система смазки. Предназначается для уменьшения показателей трения между отдельными узлами и деталями силовой установки. В качестве смазочного материала используются как различные масла, так и, что характерно для отдельных механизмов, непосредственно дизельное топливо. Устройство системы смазки предусматривает наличие масляного насоса, различных емкостей и соединяющих трубопроводов.

6. Система охлаждения. Основное функциональное назначение данного элемента дизельного двигателя очевидно и состоит в поддержании такого уровня температуры, который является оптимальным для работающего агрегата. Для этого используются два метода – принудительный отвод тепла от узлов двигателя и охлаждение их при помощи воздуха или жидкости. В качестве последней обычно используется вода или антифриз.

7. Дополнительные узлытурбина и интеркулер. Турбонаддув или турбонагнетатель позволяет увеличить давление в камере сгорания, что ведет к росту производительности двигателя. Интеркулер предназначен для дополнительного и более эффективного охлаждения горячего воздушного потока, который создается в процессе эксплуатации дизельного агрегата.

Отдельного упоминания заслуживает еще одна важная часть любого современного дизельного двигателя – электрооборудование и автоматика. Именно различные приборы управления и контроля над работой агрегата позволяют добиться главного преимущества, характерного для подобных силовых установок – высокого КПД.

Принцип работы

Дизельные двигатели делятся на двух- и четырехтактные. Первый вариант в сегодняшних условиях используется крайне редко, а потому детально рассматривать его попросту не имеет смысла. Стандартный принцип работы обычного четырехтактного двигателя предполагает, что вполне логично, 4 основных этапа:

1. Впуск. Коленвал поворачивается в диапазоне между 0 и 180 градусами. На этой стадии воздух подается в цилиндр.

2. Сжатие. Положение коленвала изменяется со 180 до 360 градусов. Это обеспечивает движение поршня к так называемой верхней мертвой точке (ВМТ), что приводит к сжатию воздуха в цилиндре в 16-25 раз.

3. Рабочий ход с последующим расширением. Коленвал осуществляет перемещение между 360 и 540 градусами. В камеру сжигания через форсунки впрыскивается топливо, которое при смешивании с воздухом воспламеняется. Это происходит чуть раньше, чем поршень достигает ВМТ.

4. Выпуск. Коленвал завершает оборот, перемещаясь между 540 и 720 градусами. В результате очередного перемещения поршня в верхнюю часть цилиндра из камеры сгорания удаляются отработанные газы. После этого цикл начинается заново.

Основные разновидности

Основным параметром, который используется для классификации дизельных двигателей, выступает конструкция камеры сжигания. По этому параметру различают два основных типа рассматриваемых силовых установок, на которых используется

· разделенная камера сгорания. Подача горючего производится в специальную камеру, которая называется вихревой и размещается в головке блока, соединяясь с цилиндром при помощи канала. Наличие такого дополнительного элемента позволяет добиться увеличения уровня нагнетания, что положительно сказывается на способности смеси к самовоспламенению;

· неразделенная камера сгорания. Более простая, а потому надежная конструкция, при использовании которой топливо подается непосредственно в пространство над поршнем, которое и выступает камерой сгорания. Это позволяет заметно снизить расход топлива, что, наряду с надежностью механизма, стало ключевой причиной широко распространения именно такого типа дизельных двигателей.

Особенно популярными дизельные агрегаты с неразделенной камерой сгорания стали после появления ТНВД системы Common Rail. Ее использование позволяет обеспечить оптимальный уровень давления, количества и времени впрыскивания топлива для последующего сжигания. Таким образом, достигаются все основные преимущества двигателей с разделенной камерой сгорания без присущих им недостатков.

Основные достоинства и недостатки

Широкое распространение и успешная конкуренция дизельных двигателей с бензиновыми объясняется рядом впечатляющих преимуществ. Главными из них выступают:

· КПД, достигающий 40% на обычных установках и 50% на дизельных двигателях с турбонаддувом. Такие показатели являются попросту недосягаемыми для агрегатов, использующих в качестве топлива бензин;

· мощность. Крутящий момент дизельного двигателя обеспечивается даже на малых оборотах, что гарантирует автомобилю уверенный и быстрый разгон;

· экологичность. Сгорание топлива под высоким давлением приводит к уменьшению количества образующихся в процессе эксплуатации двигателя выхлопных газов. В сегодняшних условиях этому плюсы дизелей придается все большее значение;

· надежность. Как правило, моторесурс дизельного агрегата примерно в полтора-два раза превосходит аналогичный показатель бензинового конкурента. Кроме того, отсутствие системы зажигания позволяет избавиться от многих традиционных проблем двигателей на бензине, например, слабой искры на свечах или их залива.

В числе недостатков, присущих дизельному двигателю, прежде всего, необходимо выделить два. Первый – это несколько более высокая стоимость транспортных средств, оборудованных этим типом силовой установки. Разница в цене обычно варьируется от 10 до 20%.

Второй минус – необходимость существенных эксплуатационных расходов. Это объясняется серьезными требованиями к качеству изготовления и уровню технического обслуживания автомобилей с дизельными двигателями. Однако, обращение в солидную компанию за приобретением, а также последующим обслуживанием, комплектованием и ремонтом сведет к минимуму недостатки агрегата, оставив в полной сохранности его впечатляющие достоинства.

Некоторые любят потяжелее: чем хорош легковой дизель, и почему они скоро вымрут

Прошедшие 20 лет войдут в историю автомобилестроения как короткий ренессанс легковых дизелей. Эпоха подходит к концу, и не за горами их закат. Почему же при всех достоинствах дизельного мотора России этот ренессанс не коснулся? Разбираемся в истории вопроса.

Особенности конструкции. Плюсы

Д авайте сначала о том, что является несомненным достоинством дизельного мотора — об экономичности. Рабочий процесс в дизельном моторе отличается от такового у бензиновых собратьев в первую очередь способом регулирования мощностных параметров. Поскольку нет нужды в поддержании стехиометрической смеси (постоянного соотношения топлива и воздуха), то можно использовать качественное регулирование, просто изменяя количество подаваемого в камеру сгорания топлива. При этом нет нужды в дроссельной заслонке, нет дополнительных потерь на всасывание, а в сочетании с высоким коэффициентом расширения получаем очень высокий КПД на любых оборотах.

После массового появления турбонаддува в восьмидесятые дизельные моторы получили еще один мощный стимул к развитию. С начала века находившиеся в тени бензиновых двигателей из-за более низкой степени форсирования по оборотам и более высокой массы, они отыграли свое с лихвой, сначала на тяжелых грузовиках, а затем и на легковушках.

На фото: двигатель Volkswagen Golf GTD (Typ 19) ‘1984–85

Турбонаддув идеально сочетался с рабочим циклом дизеля: воздух можно сжимать сколько угодно, ограничения по детонации больше нет, а большой коэффициент расширения — это еще и сравнительно невысокая температура выхлопных газов, особенно на промежуточных режимах, а значит, и щадящий режим работы турбокомпрессора.

Иными словами, дизельный двигатель намного лучше переносит эксплуатацию в пробках и с частичной нагрузкой. Нет перегрева, от которого вынуждены страдать современные «бензинки», а турбина работает в более благоприятных условиях .

Недостатков при этом, кроме цены, попросту нет. Экономичность даже улучшается за счет работы на более малых оборотах, топливо все такое же безопасное, не склонное к легкому воспламенению. И выбросы СО низкие, ведь двигатель всегда работает с избытком воздуха.

Особенности конструкции. Минусы

Минусы у дизельного двигателя всегда были тесно связаны с его же плюсами. Качественное регулирование требует сложной топливной аппаратуры, и чем больше мощность и частота вращения, тем аппаратура дороже.

Повышение требований к чистоте сгорания еще больше увеличивает ее цену. Большая степень сжатия и коэффициент расширения с очень высокой рабочей температурой в камере создают большую тепловую нагрузку на поршень и большие механические нагрузки на поршневую группу и блок цилиндров. Повышение степени форсирования за счет турбонаддува приводит к дальнейшему увеличению нагрузки на поршневую группу и головку блока цилиндров, форсунки и остальные элементы двигателя.

На фото: Porsche Cayenne S Diesel ‘2013

В результате требования ко всем элементам двигателя растут, как и их цена. Да и сами турбины стоят недешево. А еще его топливо, теоретически более дешевое, чем бензин, на практике оказалось в итоге не таким уж дешевым. Дизельное топливо высокого класса по стоимости изготовления конкурирует с бензином, а разница в цене чаще обусловлена налогами. В нашем климате к числу недостатков дизельного топлива добавляется еще и его склонность к парафинизации при низкой температуре, что требует применения специальных его сортов и подогрева топливопроводов и фильтров зимой.

После закручивания «экологических гаек» к минусам дизельных моторов добавилась еще пара пунктов. Высокоэффективное сгорание топлива дает повышенное количество окислов NOx, и снизить их количество можно либо снижением эффективности сгорания, или хитроумными химическими фокусами.

Оба метода имеют свои минусы. EGR резко снижает ресурс двигателя, а мочевинная нейтрализация требует большого количества дополнительной технической жидкости, которая к тому же имеет низкую температуру замерзания. Вдобавок при сгорании жидкого топлива сразу после распыления образуются твердые частицы. И эта сажа содержит множество канцерогенных веществ, которые нужно как-то фильтровать. А DPF фильтры оказались дорогим и крайне капризным компонентом.

Почему дизелю сказали «нет»?

Почему на наших дорогах во времена СССР не бегали дизельные Мереседесы — и так понятно. Это Высоцкий мог себе позволить ездить на машине подобного класса, а те, кто имел доступ к солярке, не могли о таком даже мечтать. В перестроечные годы, когда моряки, совслужащие из ГДР и прочие «выездные» повезли в страну первые иномарки, советский человек выяснил неприятную правду. Дизельная легковушка оказалась весьма капризной и не особенно комфортной.

И пусть тогда любая машина была уже лучше, чем отсутствие таковой, но дизельная машина, даже если это была не Волга с Перкинсом, а вполне «цивильный» Опель или Мерседес, пахла соляркой, плохо прогревалась, не всегда хорошо заводилась, сильно вибрировала и шумела. При том что бензиновые экземпляры иномарок подобным поведением не отличались. Топливная аппаратура, естественно, ломалась, и заменить ее на карбюратор от Нивы или Волги не получалось, а потянуть штучное производство запчастей для ТНВД могли редкие мастерские при НИИ.

На фото: Mercedes-Benz 300 SD Turbo Diesel (W116) ‘1977–80

Эйфория прошла довольно быстро, поэтому машины на дизельном топливе остались у тех, кто «по долгу службы» имел доступ к солярке: у водителей грузовиков и тракторов. Остальные восхищались издалека, но по возможности приобретали то, что советовали «опытные люди». Обычно это был вариант «карбюратор и цепь»: минимум расходных материалов, минимум изнашиваемых элементов, все чинится на коленке до поры до времени. Любой впрыск топлива, а особенно дизельная аппаратура впрыска были заведомо неремонтопригодны без полноценной инфраструктуры обслуживания.

Что было дальше

Прогресс дизельных моторов в 90-е годы не остался без внимания, но его явно не хватало для коренного перелома ситуации. Редкие дизельные моторы с «легковым характером» на BMW обрастали легендами, но обладатели легендарных и не очень моторов стали замечать, что дизельное топливо в России совсем не благоволит тонкой аппаратуре легковых дизелей.

На фото: BMW (E34) ‘1991–95

Пара неудачных заправок — и вот уже под замену форсунки и ТНВД, а алюминий ГБЦ, особенно форкамерных с их тонким литьем, просто тает с нашей высокосернистой соляркой. Да и по большому счету, машины с дизельными моторами едва ли стали комфортнее. Конечно, уже не было «горбов» на капоте из-за особой длинноходности моторов, но вибрация, шум, плохой запах непрогретого мотора и дымность на переходных режимах никуда не делись.

Двадцать лет на успех

Ситуация начала меняться только к концу девяностых годов. Тут законодателями стали вовсе не немцы, а итальянские и французские компании. Дочернее отделение компании FIAT, Magneti Marelli, разработало и выпустило в свет первую коммерческую систему управления Common Rail для легковых дизелей. А в 1997 году итальянцы применили систему на автомобиле Alfa Romeo 156 1,9 JTD. Bosch купил перспективную разработку, и уже в 1998 году представил первый автомобиль с собственной системой Common Rail, это был Mercedes 220CDI в кузове W202, с двигателем OM611.

На фото: Mercedes-Benz C-Klasse (W202) ‘1993–2000

Если ранее объем впрыска задавался чисто механически для всех цилиндров одновременно, а момент впрыска выбирался с помощью вакуумно-центробежного регулятора (или электронного регулирования на более поздних версиях ТНВД), то в системе с Common Rail впрыск работал примерно как на обычном бензиновом моторе. Только давление в рампе уже на первой системе составляло 1 350 бар, а топливо можно было впрыскивать несколькими порциями, обеспечивая предварительный разогрев камеры сгорания и более полное сгорание топлива на любых режимах, и снижение механических нагрузок на поршневую группу заодно.

Система снимала почти все ограничения на рост мощности дизельных моторов, а заодно позволяла избежать проблемы переходных режимов. Дизель наконец-то научился быстро набирать обороты без облаков дыма и просадки мощности. И началась безумная гонка роста степени форсирования, которая закончилась введением очередных законодательных актов, ужесточением норм выхлопа и… дизельгейтом.

Популярность дизельных моторов в Европе неуклонно падает: по данным отчёта JATO Dynamics Ltd, в 2017 году продажи их упали на 8%, и доля дизелей в структуре продаж новых машин составила 43,7%. То есть, как говорил Марк Твен, «слухи о моей смерти несколько преувеличены», однако тренд наметился совершенно однозначный. Вот уже и «законодатели жанра» в лице FCA (придумавшие Common Rail Magneti Marelli остаются «дочкой» концерна) планируют сворачивать производство машин на тяжёлом топливе к 2022 году.

Вот мимо просвистело

В России мы слышали скорее отголоски далеких боев за экономичность, ультрачистый выхлоп, минимальные налоги и средний расход топлива по линейке моделей. У нас дизели, даже победив свои родовые проблемы, так и не стали массовыми. Крупные кроссоверы все чаще покупались с дизельными моторами, а внедорожники и коммерческий транспорт еще с девяностых плотно на них подсели. Увеличение числа премиальных внедорожников способствовало дизелизации автопарка в европейской части России. Собственно, часто даже альтернативы дизелю не было, он оказывался единственным приемлемым вариантом по мощности, расходу и налогам для определенной модели машины.

На фото: Porsche Cayenne Diesel ‘2010–14

Привозные авто попадались с дизельными моторами просто потому, что в Европе их вдруг оказалось большинство, а кто-то и сознательно покупал машины с двигателем на тяжелом топливе. Но основная масса машин производилась у нас, а дизельные версии если и продавались, то это были значительно более дорогие импортируемые варианты.

Дизелизация всей страны не состоялась, на этот раз не из-за конструктивных недостатков (как в 80-е и 90-е), а по воле автопроизводителей. Для них Россия осталась рынком, на котором востребованы бензиновые моторы прошлого поколения, а с дизелями слишком много хлопот. Зимой могут замерзнуть, повредить топливную аппаратуру, а зачем им недовольные клиенты? Тем более что дизели отлично продавались в Европе, а дефицит мощностей производства всегда приходится учитывать.

На фото: Mercedes-Benz G-Klasse ‘2016

Двигатели на тяжелом топливе остались или уделом энтузиастов, которые идут на дополнительные расходы и риски ради мечты или значительной экономии топлива, или тех, кто покупает дизельную машину только потому, что бензиновая еще хуже, благо по сложности топливной аппаратуры они вполне сравнимы.

С учетом европейских тенденций, а еще короткого века нынешних премиальных авто, недолгий дизельный ренессанс бизнес-класса скорее всего закончится буквально года через два-три. Если только его не поддержит внезапно хлынувший через границу поток проданных за бесценок в Европе авто. Ну а мечты о минимальных расходах на эксплуатацию, скорее, теперь относятся к электромобилям: у них есть еще в запасе десяток-два лет, чтобы побыть синей птицей.

Как работает дизельный двигатель автомобиля

Согласно сложившимся представлениям, дизельные двигатели производят много шума, неприятно пахнут и не дают нужной мощности. Считается, что они пригодны лишь для грузовых автомобилей, фургонов и такси. Возможно, в 1980-х гг. все было так, однако с тех пор ситуация в корне поменялась. Дизельные двигатели и органы управления системами впрыска топлива стали гораздо более совершенными. В 1985г. в Великобритании было продано почти 65 000 автомобилей с дизельными двигателями (примерно 3,5% от общего количества проданных автомобилей). Для сравнения, в 1985г. было продано всего 5380. (данные, вероятно, для рынка США).

Основные части дизельного двигателя должны быть прочнее, чем части двигателя, работающего на бензине.

Зажигание. Для зажигания не требуются искры, т.к. смесь воспламеняется под действием компрессии.

Запальные свечи. Нагревают камеру сгорания при холодном старте.

Многие дизельные двигатели были созданы на основе бензиновых двигателей, однако их основные детали обладают повышенной прочностью и способны выдерживать высокое давление.

Топливо попадает в двигатель за счет нагнетательного насоса с дозатором, который обычно прикреплен к боку блока цилиндров. В системе не используется электрическое зажигание.

Основным преимуществом дизельных двигателей перед бензиновыми является снижение эксплуатационных расходов. Дизельные двигатели обладают большей эффективностью за счет сильной компрессии и низкой стоимости топлива. Разумеется, цены на дизель могут варьироваться, поэтому автомобиль с дизельным двигателем обойдется вам дорого, если вы живете в регионе с высокими ценами на дизельное топливо. Кроме того, таким автомобилям реже требуется техобслуживание, однако замена масла для них организуется чаще, чем для автомобилей, которые работают на бензине.

Повышение мощности

Основным недостатком дизельных двигателей является их малая мощность по сравнению с бензиновыми двигателями равного объема.

Эту проблему можно решить, просто увеличив объем двигателя, однако зачастую это приводит к значительному утяжелению автомобиля.

Некоторые производители снабжают свои двигатели турбонагнетателями, чтобы повысить их конкурентоспособность. К примеру, производством турбодизелей занимаются Rover, Mercedes, Audi и VW.

Как работают дизельные двигатели

Впуск

При движении поршня вниз по цилиндру открывается впускной клапан, впускающий воздух.

Компрессия

Когда поршень доходит до нижнего основания цилиндра, впускной клапан закрывается. Поршень поднимается, сжимая воздух.

Зажигание

Топливо впрыскивается в цилиндр, когда поршень доходит до верхнего основания. При этом топливо воспламеняется и снова приводит поршень в движение.

Выпуск

На обратном пути поршень открывает клапан выпуска, и отработанный газ выходит из цилиндра.

Четырехтактные дизельный и бензиновый двигатели работают по-разному, несмотря на то, что в их состав входят одинаковые компоненты. Основное отличие заключается в способе зажигания топлива и управления получаемой в результате энергией.

В двигателе, работающем на бензине, смесь воздуха и топлива зажигается от искры. В дизельном двигателе топливо воспламеняется под действием сжатого воздуха. В дизельных двигателях воздух сжимается в среднем в соотношении 1/20, в то время для бензиновых двигателей — это соотношение в среднем равно 1/9. Такое сжатие сильно нагревает воздух до температуры, достаточной для мгновенного воспламенения топлива, поэтому при использовании дизельного двигателя нет нужды в искрах или других способах зажигания.

Бензиновые двигатели поглощают очень много воздуха за один такт поршня (конкретный объем зависит от степени открытия отверстия дросселя). Дизельные двигатели всегда поглощают один и тот же объем, который зависит от скорости, при этом воздухопровод не оснащен дросселем. Его перекрывает один впускной клапан, а в двигателе отсутствует карбюратор и дисковый затвор.

Когда поршень достигает нижнего основания цилиндра, впускной клапан открывается. Под действием энергии от других поршней и импульса от махового колеса поршень отправляется к верхнему основанию цилиндра, сжимая воздух примерно в двадцать раз.

Как только поршень достигает верхнего основания, в камеру сгорания впрыскивается тщательно отмеренный объем дизельного топлива. Нагретый при сжатии воздух мгновенно воспламеняет топливо, которое расширяется при сгорании и снова отправляет поршень вниз, поворачивая коленчатый вал.

Когда поршень двигается вверх по цилиндру на такте выпуска, выпускной клапан открывается, позволяя отработанным и расширившимся газам выйти в выхлопную трубу. В конце такта выпуска цилиндр снова готов к новой порции свежего воздуха.

Конструкция дизельного двигателя

Дизельный и бензиновый двигатель состоят из одинаковых частей, которые выполняют одни и те же функции. Тем не менее, части дизельного двигателя обладают повышенной прочностью, т.к. они призваны выдерживать большую нагрузку.

Стенки блока дизельного двигателя обычно намного толще стенок блока бензинового двигателя. Они укреплены дополнительными решетками, которые блокируют импульсы. Помимо этого, блок дизельного двигателя эффективно поглощает шумы.

Поршни, шатуны, валы и крышки корпуса подшипников изготавливаются из самых прочных материалов. Головка цилиндра дизельного двигателя имеет особый вид, связанный с формой форсунок, а также формами камеры сгорания и вихрекамеры.

Впрыск

Для плавной и эффективной работы любого двигателя внутреннего сгорания требуется правильная смесь воздуха и топлива. Для дизельных двигателей эта проблема особенно актуальна, т.к. воздух и топливо подаются в разное время, смешиваясь внутри цилиндров.

Впрыск топлива в двигатель может быть прямым и непрямым. По сложившейся традиции чаще используется непрямой впрыск, т.к. он позволяет создавать вихревые потоки, которые смешивают топливо и сжатый воздух в камере сгорания.

Прямой впрыск

При прямом впрыске топливо опадает прямо в камеру сгорания, расположенную в головке поршня. Такая форма камеры не позволяет смешивать воздух с топливом и поджигать получившуюся смесь без жесткого стука, характерного для дизельных двигателей.

В двигателе с непрямым впрыском обычно присутствует небольшая спиральная вихрекамера (форкамера). Перед попаданием в камеру сгорания топливо проходит через вихрекамеру, и в нем образуются вихревые потоки, обеспечивающие лучшее смешивание с воздухом.

Недостатком такого подхода является то, что вихрекамера становится частью камеры сгорания, а значит, вся конструкция приобретает неправильную форму, вызывает проблемы при сгорании и негативно влияет на эффективность работы двигателя.

Непрямой впрыск

При непрямом впрыскивании топливо попадает в небольшую форкамеру, а оттуда — в камеру сгорания. В результате конструкция приобретает неправильную форму.

Двигатель с прямым впрыском не оборудован вихрекамерой, и топливо прямиком попадает в камеру сгорания. При проектировании камер сгорания в головке поршня инженеры должны уделять особое внимание их форме, чтобы обеспечить достаточную силу вихрей.

Запальные свечи

Чтобы разогреть головку блока цилиндров и блок цилиндров перед холодным стартом, в дизельных двигателях используются запальные свечи. Короткие и широкие свечи являются составной частью электросистемы автомобиля. При включении питания элементы в свечах очень быстро нагреваются.

Запальные свечи включаются при особом повороте колонки рулевого управления или с помощью отдельного переключателя. В последних моделях свечи выключаются автоматически, как только двигатель разогревается и разгоняется до скорости, превышающей скорость холостого хода.

Управление скоростью

В отличие от бензиновых двигателей, в дизельных двигателях отсутствует дроссель, поэтому объем потребляемого ими воздуха остается неизменным. Частота вращения двигателя определяется только объемами топлива, впрыскиваемого в камеру сгорания. Чем больше топлива, тем больше энергии выделяется при сгорании.

Педаль газа подключена к датчику в система зажигания, а не к дросселю, как в автомобилях, которые работают на бензине.

Для остановки дизельного двигателя по-прежнему необходимо повернуть ключ зажигания. В бензиновом двигателе при этом исчезает искра, а в дизельном — отключается соленоид, отвечающий за подачу топлива в насос. После этого двигатель расходует оставшееся в нем топливо и останавливается. По факту, дизельные двигатели останавливаются быстрее, чем бензиновые, потому что высокое давление сильно замедляет ход.

Как заводится дизельный двигатель

Дизельные двигатели, подобно бензиновым, заводятся при включении электромотора, запускающего цикл сжатия и воспламенения. Тем не менее, при низкой температуре дизельные двигатели заводятся с трудом, потому что сжатый воздух не разогревается до температуры, необходимой для воспламенения топлива.

Для решения этой проблемы производители изготавливают запальные свечи. Запальные свечи представляют собой питаемые от батареи электроотопители, которые включаются за несколько секунд до запуска двигателя.

Дизельное топливо

Топливо, используемое в дизельных двигателях, сильно отличается от бензина. Оно не проходит очистку, а потому представляет собой вязкую тяжелую жидкость, которая испаряется довольно медленно. Благодаря этим физическим свойствам дизельное топливо иногда называют дизельным маслом или мазутом. В сервисных центрах и на заправках автомобили, работающие на дизельном топливе, часто называют дервами (от diesel-engined road vehicles).

В холодную погоду дизельное топливо быстро густеет или даже замерзает. Кроме того, в нем содержится небольшое количество воды, которая также может замерзнуть. Все виды топлива поглощают из атмосферы воду. Более того, она нередко проникает в подземные резервуары. Допустимое содержание воды в дизельном топливе — 0,00005-0,00006%, т.е. четверть стакана воды на 40 литров топлива.

Лед или водяная пробка может заблокировать топливопроводы и форсунки, что делает невозможной работу двигателя. Именно поэтому в холодную погоду можно увидеть водителей, которые пытаются подогреть топливопровод с помощью паяльника.

В качестве превентивной меры можно возить с собой дополнительный бак, однако современные производители уже добавляют в топливо примеси, которые позволяют использовать его при температуре выше -12-15°C.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: