Как устроен клапанный механизм

Устройство, принцип работы и регулировка клапанного механизма двигателя

Клапанный механизм является непосредственно исполнительным устройством ГРМ, который осуществляет своевременную подачу топливовоздушной смеси в цилиндры двигателя и дальнейший выпуск отработавших газов. Ключевыми элементами системы являются клапаны, которые также обеспечивают герметичность камеры сгорания. Они испытывают большие нагрузки, поэтому к их работе предъявляются особые требования.

  1. Устройство клапанного механизма
  2. Особенности работы
  3. Количество клапанов
  4. Устройство привода
  5. Стук при работе
  6. Регулировка зазора

Устройство клапанного механизма

Для работы обычного двигателя необходимо минимум два клапана на каждый цилиндр. Один впускной и один выпускной. Сам клапан состоит из стержня и тарелки (головка). Место соприкосновения тарелки с ГБЦ называю седлом. Впускные клапаны имеют больший диаметр тарелки, чем выпускные. Это обеспечивает лучшее наполнение камеры сгорания топливовоздушной смесью.

Устройство клапанного механизма

Весь клапанный механизм состоит из следующих основных элементов:

  • впускной и выпускной клапаны;
  • направляющие втулки (обеспечивают точное направление движения клапанов);
  • пружина (возвращает клапан в исходное положение);
  • седло клапана (место соприкосновения тарелки с корпусом);
  • сухари (два сухаря обеспечивают опорную поверхность для пружины и фиксируют всю конструкцию);
  • маслосъемные колпачки или маслоотражательные кольца (не дает маслу попасть в цилиндр);
  • толкатель (передает нажимное усилие от кулачка распредвала).

Кулачки на распределительном вале нажимают на клапаны. Их возврат в исходное положение обеспечивается за счет пружины. Пружина крепится на стержне с помощью сухарей и тарелки пружины. Для гашения резонансных колебаний на стержне могут устанавливаться не одна, а две пружины с разносторонней навивкой.

Направляющие втулки клапанов

Направляющая втулка представляет собой деталь цилиндрической формы. Она снижает трение и обеспечивает ровный и правильный ход стержня. В работе эти детали также подвергаются нагрузкам и воздействию температуры. Поэтому для ее изготовления применяются износостойкие и жаростойкие сплавы. Втулки выпускного и впускного клапанов несколько отличаются друг от друга в связи с разницей в нагрузках.

Особенности работы

Клапаны постоянно подвержены воздействиям высокой температуры и давления. Это требует особого внимания к конструкции и материалам данных деталей. Особенно это касается выпускной группы, так как через них выходят горячие газы. Тарелка выпускного клапана в бензиновых двигателях может разогреваться до 800˚С – 900 ˚С, а в дизельных 500˚С – 700˚С. Нагрузка на тарелку впускного в несколько раз ниже, но и она достигает 300˚С, что также немало.

Именно поэтому в их производстве применяются жаропрочные сплавы металлов, содержащие легирующие присадки. Также выпускные клапаны часто имеют полый стержень с натриевым наполнителем. Это делается для лучшей терморегуляции и охлаждения тарелки. Натрий внутри стержня плавится, течет и забирает часть тепла с тарелки и переносит его на стержень. Так можно избежать перегрева детали.

Клапанный механизм двигателя

На седле в процессе работы может образоваться нагар. Чтобы избежать этого, применяют конструкции, которые вращают клапан. Седло представляет собой кольцо из высокопрочных стальных сплавов, которое напрессовывается непосредственно на головку цилиндров для более плотного контакта.

Также для правильной работы механизма должен соблюдаться регламентированный тепловой зазор. От высоких температур детали расширяются, что может привести к неправильной работе клапана. Зазор выставляется между кулачками распредвала и толкателями путем подбора специальных металлических шайб определенной толщины или самих толкателей (стаканов). Если в двигателе применяются гидрокомпенсаторы, то зазор регулируется автоматически.

Слишком большой тепловой зазор, будет препятствовать полному открытию клапана, а следовательно, цилиндры будут менее эффективно наполняться свежим зарядом. Маленький зазор (или его отсутствие) не позволит клапанам закрыться до конца, что приведет к их прогару и снижению компрессии в двигателе.

Количество клапанов

В классическом варианте четырехтактному двигателю для работы достаточно иметь по два клапана на каждый цилиндр. Но к современным моторам предъявляются все большие требования по мощности, расходу топлива и экологичности, поэтому для них этого уже становится недостаточно. Поскольку чем больше клапанов, тем более эффективно происходит наполнение цилиндра свежим зарядом. В разное время на двигателях пробовались следующие схемы:

  • трехклапанные (впуск – 2, выпуск – 1);
  • четырехклапанные (впуск – 2, выпуск – 2);
  • пятиклапанные (впуск – 3, выпуск – 2).

Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего числа клапанов на один цилиндр. Но при этом усложняется конструкция двигателя.

На сегодняшний день наиболее популярными являются моторы с 4 клапанами на цилиндр. Первые такие двигатели появились еще в 1912 году на автомобиле Peugeot Gran Prix. Тогда широкого применения данное решение не получило, но начиная с 1970 года начали активно выпускаться серийные автомобили с таким количеством клапанов.

Устройство привода

За правильную и своевременную работу клапанного механизма отвечает распределительный вал и привод ГРМ. Конструкция и количество распредвалов для каждого типа двигателя выбирается индивидуально. Деталь представляет собой вал, на котором выполнены кулачки определенной формы. Проворачиваясь, они оказывают давление на толкатели, гидрокомпенсаторы или коромысла и открывают клапана. Тип схемы зависит от конкретного двигателя.

Газораспределительный механизм

Распредвал находится непосредственно в головке блока цилиндров. Привод к нему идет от коленчатого вала. Это может быть цепная, ременная или зубчатая передача. Наиболее надежной является цепная, но она требует дополнительных конструктивных решений. Например, успокоитель для гашения вибрации цепи и натяжитель. Скорость вращения распределительного вала в два раза ниже, чем скорость вращения коленчатого вала. Так обеспечивается согласование их работы.

От количества клапанов зависит количество распределительных валов. Существует две основных схемы:

  • SOHC (одновальная);
  • DOHC (двухвальная).

При наличии только двух клапанов достаточно одного распредвала. Вращаясь, он обеспечивает попеременное открытие впускного и выпускного клапанов. В наиболее распространенных четырехклапанных двигателях устанавливаются два распредвала. Один обеспечивает работу впускных, а другой выпускных клапанов. В двигателях с V-образных расположением цилиндров устанавливается четыре распредвала. По два на каждую сторону.

Кулачки распредвала не толкают стержень клапана напрямую. Существует несколько типов “посредников”:

  • роликовые рычаги (коромысло);
  • механические толкатели (стаканы);
  • гидравлические толкатели.

Роликовые рычаги имеют более предпочтительную конструкцию. На гидротолкатель давят так называемые коромысла, которые качаются на вставных осях. Чтобы снизить трение на рычаге предусмотрен ролик, который контактирует непосредственно с кулачком.

В другой схеме используются гидравлические толкатели (компенсаторы зазора), которые расположены непосредственно на стержне. Гидрокомпенсаторы автоматически регулируют тепловой зазор и обеспечивают мягкую и менее шумную работу механизма. Это небольшая деталь состоит из цилиндра с поршнем и пружиной, каналов для масла и обратного клапана. Для работы гидротолкателя используется масло, которое подается из системы смазки двигателя. Более подробно про гидрокомпенсаторы можно прочитать в отдельной статье на нашем сайте.

Снятие стакана клапана магнитом

Механические толкатели (стаканы) представляют собой втулку, закрытую с одной стороны. Они устанавливаются в корпус ГБЦ и непосредственно передают усилие на стержень клапана. Основные их недостатки заключаются в необходимости периодической регулировки зазоров и стуке при работе на непрогретом двигателе.

Стук при работе

Основной неисправностью клапанов (не считая прогара) считается появляющийся стук на холодном или горячем двигателе. Стук на холодном двигателе исчезает после набора температуры. Когда они разогреваются и расширяются, тепловой зазор закрывается. Также причиной может стать вязкость масла, которое не поступает в нужном объеме в гидрокомпенсаторы. Загрязнение масляных каналов компенсатора также может вызывать характерный стук.

На горячем двигателе клапана могут стучать из-за низкого давления масла в системе смазки, загрязнения масляного фильтра или неправильного теплового зазора. Также следует учитывать естественный износ деталей. Неисправности могут быть в самом клапанном механизме (износ пружины, направляющей втулки, гидротолкателей и т.д.).

Регулировка зазора

Регулировку проводят только на холодном двигателе. Текущий тепловой зазор определяется специальными металлическими плоскими щупами разной толщины. Для изменения зазора на коромыслах имеется специальный регулировочный винт, который проворачивается. В системах с толкателями или регулировочными шайбами регулировка происходит путем подбора деталей нужной толщины.

Регулировка клапанов для механизма с коромыслами

Рассмотрим пошаговый процесс регулировки клапанов для двигателей с толкателями (стаканами) или шайбами:

  1. Снимите клапанную крышку двигателя.
  2. Проверните коленчатый вал так, чтобы поршень 1-го цилиндра находился в ВМТ. Если это сложно сделать по меткам, то можно выкрутить свечу и вставить в колодец отвертку. Ее максимальное перемещение вверх покажет мертвую точку.
  3. С помощью набора плоских щупов измерьте зазор в приводе клапанов под теми кулачками, которые не нажимают на толкатели. Щуп должен иметь плотный, но не слишком свободный ход. Запишите номер клапана и величину зазора.
  4. Проверните коленчатый вал на один оборот (360°) так, чтобы поршень 4-го цилиндра находился в ВМТ. Измерьте зазор под оставшимися клапанами. Запишите данные.
  5. Проверьте, в каких клапанах зазор не попадает в допуск. Если такие имеются, то подберите толкатели нужной толщины, снимите распредвалы и установите новые стаканы. На этом процедура закончена.
Читайте также  Как называется машина которая ломает дома

Проверку зазора рекомендуется проводить каждые 50-80 тысяч километров пробега. Данные о стандартных зазорах можно найти в руководстве по ремонту автомобиля.

Величина допускаемого зазора для впускных и выпускных клапанов иногда может отличаться.

Правильно настроенный и отрегулированный газораспределительный механизм обеспечит ровную и плавную работу ДВС. Также это положительно скажется на ресурсе мотора и комфорте водителя.

Устройство современного двигателя

Клапанный механизм

Устройство газораспределительного механизма

Клапанный механизм включает в себя следующие детали: клапаны, на­правляющие втулки, седла клапанов, возвратные пружины, опорные тарел­ки, сухари, механизм вращения клапана (двигатель ЗИЛ-508.10).

Клапаны предназначены для герметизации цилиндра при тактах сжатия и рабочего хода и соединения их с трубопроводами впускной или выпускной системы при тактах впуска или выпуска в процессе газообмена.

Условия работы клапанов:

• большие динамические нагрузки;

• высокие скорости перемещения;

• неравномерный нагрев отдельных участков;

• повышенная коррозионно-активная среда.

Материал изготовления клапанов

Клапаны изготовляются из легированных сталей с высоким содержани­ем хрома и никеля.

Устройство клапана

Притирка клапанов обеспечивают

Как проводится притирка клапанов

и какие приспособления используются

для притирки клапанов

Клапан состоит из головки (или тарелки) и стержня. Различают клапа­ны с плоской, выпуклой и тюльпанообразной головками. Головки обычно имеют небольшой (около 2 мм) цилиндрический поясок и уплотнительную фаску, снятую под углом 45 и 30 градусов. Уплотнительные фаски клапанов шли­фуют и притирают к седлам (притирка клапанов), а стержни подвергают термообработке, шли­фовке, полировке и покрывают хромом. Торцы стержней (3—5 мм) закали­вают. На концах стержней имеются цилиндрические, конусные или фасон­ные проточки для крепления клапанных пружин.

Чтобы уменьшить напряженность выпускных клапанов, возникающую вследствие высоких температур, в ряде двигателей применяют натриевое ох­лаждение. С этой целью клапан выполняют полым с утолщенным стержнем и примерно на 1/3 полости заполняют металлическим натрием, температура плавления которого составляет около 97 К. В рабочем состоянии расплав­ленный натрий, перемещаясь внутри полости при возвратно-поступатель­ном движении клапана, увеличивает интенсивность отвода теплоты от горя­чей головки к более холодному стержню и далее к направляющей втулке.

Направляяющие втулки

используются для сжатия

и рассухаривания пружин клапанов

Клапанные пружины

Клапанные пружины обеспечивают плотное прилегание клапанов к сед­лам и своевременное их закрытие после завершения действия кулачков рас­пределительного вала. Характеристику (жесткость) клапанных пружин под­бирают из условий сохранения кинематической связи между деталями меха­низма газораспределения. Клапанные пружины изготовляются из стальной проволоки диаметром 4-6 мм, легированной марганцем и хромом.

Нижним концом пружина опирается на головку блока цилиндров через специальную опорную тарелку, а верхним концом соединяется двумя сухарями с клапаном через верхнюю тарелку. Для этой цели сухари на внут­ренней поверхности имеют выступы, которые входят в проточку клапана, а гладкая наружная поверхность сухарей выполнена в виде усеченного конуса.

Два сухаря установленные на клапан, образуют опорную коническую поверхность, которая сопрягается с опорной поверхностью проточки в верхней тарелке, и это соединение удерживается в замкнутом состоянии за счет предварительного сжатия пружины. Чтобы устранить возможность возникновения опасного для прочности пружин резонанса, на клапаны ставят по две пружины с навивкой витков в противоположные стороны или делают пружины с переменным шагом навивки.

Седла клапанов

Седла клапанов. Наиболее важным сопряжением, определяющим долго­вечность механизма газораспределения, является сопряжение седло — кла­пан, так как оно подвержено ударным нагрузкам при посадке клапана и значительным термическим перегрузкам. Седло клапана, с которым сопри­касается уплотнительная фаска клапана, обрабатывают инструментом с уг­лами заточки 15, 45 и 75 градусов таким образом, чтобы уплотнительный поясок седла имел угол 45 градусов и ширину около 2 мм. По своим размерам поясок дол­жен подходить ближе к меньшему основанию конусной фаски клапана. Фаска клапана имеет меньший угол и соприкасается с седлом только узким пояском у своего большого основания, что обеспечивает хорошее уплотне­ние клапанного отверстия. Вставные седла изготовляются в виде отдельных колец из специального чугуна, легированной стали или металлокерамики.

Механизм вращения клапана

Для поддержания в рабочем состоянии контактных поверхностей уплотнительных фасок выпускных клапанов иногда применяют специальные устройства, позволяющие принудительно поворачивать клапаны в процессе работы.

Механизм вращения клапана состоит из неподвижного корпуса, в наклонных канавках которого расположены пять шариков с возвратными пружинами, дисковой пружины и опорной шайбы с замочным кольцом. Механизм вращения клапана устанавливается в расточке, сделанной в головке блока цилиндров иол опорной шайбой клапанной пружины. При закрытом клапане давление на дисковую пружину невелико, и она вогнута наружным краем вверх, а внутренним краем опира­ется в заплечик корпуса. Шарики отжаты пружинами в исходное положе­ние. В момент открытия клапана усилие со стороны клапанной пружины возрастает, под действием чего дисковая пружина, выпрямляясь, перелает усилие на шарики и вызывает их перемещение в углубление. Когда клапан закрывается, сила, действующая на дисковую пружину, уменьшается, и она, выгибаясь, освобождает шарики. Шарики под действием возвратных пру­жин перемешаются в исходное положение, что приводит к повороту клапа­на на некоторый угол (клапаны совершают 20—40 оборотов в минуту).

В некоторых двигателях применяют менее эффективное, но более про­стое устройство, основанное на использовании способа крепления клапан­ной пружины на стержне клапана. Крепление пружины на клапане состоит из опорной тарелки, втулки и двух сухарей.

Клапаны

Для работы четырехтактного ДВС требуется как минимум по два клапана на цилиндр — впускной и выпускной. В настоящее время применяются клапаны тарельчатого типа со стержнем. Для улучшения наполнения цилиндра горючей смесью диаметр тарелки впускного клапана делается больше, чем у выпускного. Седла клапанов изготовленные из чугуна или стали, запрессовываются в головку блока цилиндров.
При работе двигателя клапаны подвергаются значительным механическим и тепловым нагрузкам, поэтому для их изготовления применяются специальные сплавы. Иногда для улучшения охлаждения клапанов высокофорсированных двигателей применяют клапаны с полым стержнем, который заполняется натрием. Натрий при рабочих температурах плавится и в расплавленном виде перетекает внутри клапана, перенося тепло от более нагретой тарелки клапана к стержню. Для лучшей очистки рабочей фаски от нагара и равномерной теплопередачи иногда применяются различные механизмы для вращения клапана.
ГРМ могут быть нижнеклапанными и верхнеклапанными, но в современных двигателях используются только верхнеклапанные ГРМ, когда клапаны располагаются в головке цилиндров. Клапан удерживается в закрытом состоянии с помощью пружины, а открывается при нажатии на стержень клапана. Клапанные пружины должны иметь определенную жесткость для гарантированного закрытия клапана при работе, но жесткость пружины не должна быть чрезмерной, чтобы не увеличивать ударной нагрузки на седло клапана. Иногда для уменьшения возможности резонансных колебаний используются пружины уменьшенной жесткости, но на один клапан устанавливается по две пружины.

При использовании двух пружин они должны быть навиты в разные стороны, чтобы не произошло заклинивания клапана в случае поломки одной из пружин и попадания ее витка между витками другой пружины. Для снижения потерь на трение в ГРМ сейчас широко применяются ролики, размещаемые на рычагах и толкателях привода клапанов.

Рис. Замена трения скольжения трением качения путем применения в клапанном механизме роликов дает возможность уменьшить потери на привод клапанов

При открытии (опускании) впускного клапана через кольцевой проход между тарелкой клапана и седлом проходит топливно-воздушная смесь (или воздух) и заполняет цилиндр. Чем больше будет площадь проходного сечения, тем полнее заполнится цилиндр, а следовательно, и выходные показатели этого цилиндра при рабочем ходе будут выше. Для лучшей очистки цилиндров от продуктов сгорания желательно также увеличить диаметр тарелки выпускного клапана. Размеры тарелок клапанов ограничены размером камеры сгорания, выполненной в головке цилиндров. Лучшее наполнение цилиндров и их очистка обеспечиваются при использовании большего, чем два, числа клапанов на один цилиндр. Встречаются трехклапанные (два впускных и один выпуск ной) системы и пятиклапанные (три впускных и два выпускных) системы.

Рис. Четырехклапанная камера сгорания. Применение газораспределительного механизма с четырьмя клапанами на цилиндр в дизельном двигателе

Впервые четыре клапана на цилиндр были использованы еще 1912 г. на двигателе автомобиля Peugeot Gran Prix. Широкое использование такой схемы на серийных легковых автомобилях началось только в 1970-е гг. Сейчас ГРМ с четырьмя клапанами на цилиндр стали практически стандартными для двигателей европейских и японских легковых автомобилей. Некоторые из двигателей Mercedes имеют по три клапана на цилиндр, два впускных и один выпускной, с двумя свечами зажигания (по одной с каждой стороны от выпускного клапана).
Двигатели некоторых автомобилей группы Volksvagen-Audi и ряд японских двигателей используют пять клапанов на цилиндр (три впускных и два выпускных), но при таком числе клапанов значительно усложняется их привод.

Читайте также  Как сделать мини пилораму

Рис. Трехклапанный ГРМ. Компания DaimlerChrysler утверждает, что ГРМ с двумя впускными, одним выпускным и двумя свечами зажигания обеспечивает снижение вредных веществ в отработавших газах

Детали клапанного механизма газораспределения

Клапаны открывают и закрывают впускные и выпускные каналы в головке цилиндров. При работе двигателя клапаны подвергаются сильному нагреву, ударной нагрузке, износу, а также коррозийному действию горячих газов. Выпускной клапан нагревается до 873. 1073 К (600. 800 °С), а впускной — до 573. 673 К (300. 400 °С). Поэтому впускной клапан изготавливают из хромистой стали, а выпускной — из жаростойкой (сильхромо- вой). На двигателях Д-240, ЯМЗ-238НБ и ЯМЗ-240Б оба клапана изготовлены из жаростойкой стали.

Клапан состоит из тарелки 1 (рис. 153) и стержня 2. Диаметр впускных клапанов больше диаметра выпускных. В результате достигается лучшее наполнение цилиндров воздухом.

Переход от тарелки к стержню сделан плавным.

Фаска 11 тарелки служит для плотного закрывания седла в головке цилиндров. Фаска и седло выполнены обычно под углом 45°. Плотность прилегания фасок и седла достигается путём шлифовки притирки их друг к другу.

Рис. 153. Клапанный механизм двигателей:

I — тарелка клапана; 2 -стержень; 3 — внутренняя пружина; 4 — наружная пружина: 5 — предохранительное пружинное кольцо; 6 — сухарики; 7 — тарелка пружины; 8, 9 — выточки;

10 — направляющая втулка;

II — фаска тарелки клапана

Стержень клапана точно обработан по всей длине и отшлифован. В его верхней части сделана цилиндрическая выточка 8, в которую входят выступы сухариков 6.

Сухарики представляют собой кольцо, разрезанное на две половины; они удерживают тарелку 7 пружин. На двигателях А-01МЛ, СМД-60, СМД-62, ЯМЗ- 238НБ и ЯМЗ-240Б, 3M3-53-11 между сухариками и тарелкой пружин установлена закаленная втулка. Она зажимает сухарики и нижним торцом опирается на тарелку. На двигателях СМД-14БН, СМД-18БН,

3M3-53-11, под выточкой 8 имеется вторая цилиндрическая выточка 9, в которую вставлено пружинное кольцо 5, предотвращающее падение клапана в цилиндр в случае его обрыва.

Сёдла впускных и выпускных клапанов двигателей СМД-14БН, СМД-18БН и Д-240, 3M3-53-11 находятся в головке цилиндров. У двигателей А-41, А-01МЛ,

ЯМЗ, ГАЗ-52 вставные кольца из жаропрочного чугуна предусмотрены только для выпускных клапанов, которые запрессованы в головку. Вставные кольца увеличивают срок службы головки и облегчают её ремонт.

Направляющая втулка 10 обеспечивает направленное движение клапана и посадку его в седло без перекоса. Она запрессована в головку цилиндров. Направляющие втулки изготовляют из чугуна, стали с покрытием внутри фосфористой бронзой или из металлокерамики.

Пружина 4 (см. рис. 151) создаёт усилие, необходимое для закрывания клапана 2 и его плотной посадки в седло. Она препятствует отрыву клапана и толкателя 12 от кулачка распределительного вала 13, и таким образом сохраняется установленная продолжительность открывания клапана.

Каждый клапан двигателя удерживается в закрытом состоянии двумя пружинами — наружной 4 и внутренней 3 (см. рис. 153). Чтобы витки пружин не заклинивались, навивка делается в разные стороны. Наличие двух пружин позволяет уменьшить их размер и облегчает условия их работы, предотвращая явление резонанса.

Передаточные детали механизма газораспределения передают движение от распределительного вала к клапанам. К ним относятся толкатель 12 (см. рис. 151), штанга 11, коромысло 6 с регулировочным винтом 8 и контргайкой 9, ось 7 коромысел со стойкой 10 и распорными пружинами.

Толкатель (рис. 154) служит для передачи движения от кулачков распределительного вала к клапанам. Изготовляют его из чугуна или стали, рабочие поверхности шлифуют и термически обрабатывают. Для уменьшения массы толкатели делают пустотелыми.

Рис. 154. Толкатели:

а — цилиндрический с плоским днищем; б — цилиндрический с выпуклым днищем; в -качающийся; 1 — распределительный вал; 2 -толкатель; 3 — штанга; 4 — ось; 5 — втулка; 6 — распорная втулка; 7 — пята; 8 — игольчатый подшипник ролика; 9 — ось ролика; 10 — ролик

Цилиндрической частью толкатель перемещается в отверстиях блок- картера (СМД-14БН, СМД-18БН, Д-240, СМД-60, СМД-62, 3M3-53-11, ЗИЛ-130). Толкатели бывают: цилиндрические (рис. 154, а, б) с плоским (СМД-14БН, СМД-18БН, СМД-60, СМД-62 и выпуклым (Д-240, 3M3-53- 11, ЗИЛ-130) днищем и качающиеся роликовые (рис. 154, в), применяемые в двигателях А-01МЛ, ЯМЗ-238НБ и ЯМЗ-240Б. Для более равномерного износа толкатель, кроме возвратно-поступательного движения, совершает ращательное — вокруг своей оси. При плоском днище вращательное движение достигается смещением оси толкателя относительно оси кулачка распределительного вала (рис. 154, а), а при выпуклом — применением кулачков распределительного вала, имеющего небольшую конусность. Вследствие этого точка касания толкателя с кулачком смещается относительно его оси.

Толкатель двигателей А-01МЛ, ЯМЗ-238НБ и ЯМЗ-240Б (рис. 154, в) представляет собой ролик 10, сидящий на игольчатом подшипнике 8, ось 9 которого закреплена на качающемся рычаге. При вращении кулачка распределительного вала толкатель поднимается и поворачивает рычаг. Рычаги шарнирно надеты на трубчатую ось 4 толкателей, которая закреплена в блоке двигателя. Чтобы уменьшить трение, в отверстие рычага вставлены бронзовые втулки 5. Для предотвращения осевого смещения между толкателями установлены распорные втулки 6. С целью повышения срока службы толкателя в месте его контакта со штангой в него запрессована термически обработанная стальная пята 7 со сферической поверхностью.

Штанга 11 (см. рис. 151) служит для передачи усилия от толкателя к коромыслу. Штанги двигателей могут быть изготовлены из цельного стального прутка или из пустотелого стального стержня. На концах пустотелых штанг имеются стальные шлифованные, термически обработанные наконечники. Нижний наконечник имеет форму шара. Он опирается на сферическую поверхность толкателя. Верхний наконечник может иметь форму либо шара, либо на нём может быть углубление сферической формы. На него опирается головка регулировочного винта коромысла. Концы штанг, выполненных из цельного стального прутка, имеют такую же шаровую форму или углубление, они также термически обработаны и отшлифованы.

Коромысло 6 представляет собой двуплечий рычаг с плечами различной длины. На коротком плече имеется резьбовое отверстие, в которое ввернут регулировочный винт 8 с контргайкой 9. В нижний конец винта упирается штанга 11. С помощью винта 8 регулируют зазор между бойком длинного плеча коромысла и стержнем клапана 2. Рабочая поверхность бойка отшлифована и подвергнута термической обработке. В средней части коромысла имеется отверстие с бронзовой втулкой, которое служит для установки коромысла на оси.

Поверхности трения (коромысло — ось и винт — штанга) смазываются маслом, которое подводится по трубчатой оси 7 к втулкам и по сверлениям в коромысле — к винту 8, а через него — к штанге 11.

Оси 7 коромысел двигателей закреплены в стойках 10, расположенных на верхней плоскости головки цилиндров, и крепятся на ней шпильками. От осевого смещения коромысла удерживаются распорными пружинами. Оси пустотелые, их полость используется как канал для подвода масла к втулкам коромысел, наконечников штанг, головок регулировочных винтов, направляющих втулок. С торцов оси закрыты заглушками.

Распределительный eai 13 изготовлен из стали или модифицированного чугуна. На нём имеются кулачки, опорные шейки и опорное место для крепления шестерни 14. Каждый кулачок воздействует на один клапан — впускной или выпускной. Кулачки и шейки выполнены заодно с валом и располагаются на нём в определенном порядке под разными углами в соответствии с порядком работы цилиндров. Они отшлифованы и подвергнуты термической обработке.

Распределительные валы двигателей СМД-14БН, СМД-18БН и Д-240 имеют три опорные шейки, двигателя А-01МЛ — семь, СМД-60, СМД-62, ЯМЗ-238НБ и ЯМЗ-240Б — пять. Шейки опираются на бронзовые, стальные или чугунные втулки, закреплённые в блоке двигателя. Масло к ним подаётся под давлением из канала блока. В одной из шеек имеется сверление для подвода масла в канал, откуда оно подаётся к коромыслам. Масло в канал поступает в момент совмещения сверления в шейке с каналом в остове двигателя. В большинстве двигателей на переднем конце распределительного вала установлена приводная шестерня 14, а в двигателях СМД-60 и СМД-62 она расположена на заднем конце.

Читайте также  Как собрать картинг своими руками

Распределительные шестерни передают вращение распределительному валу, топливному и масляному насосам и другим механизмам. Шестерни распределительного 14 и коленчатого 15 валов однорядных двигателей (СМД-14БН, СМД-18БН, Д-240, А-01МЛ) соединены промежуточной шестерней 16, а V-образных (СМД-60, СМД-62, ЯМЗ-238НБ, ЯМЗ-240Б) — непосредственно.

Шестерни крепят на валах шпонками или болтами в строго определённых положениях. Зубья при сборке двигателя соединяют по сделанным на шестернях меткам. Такая установка обеспечивает согласованное вращение коленчатого и распределительного валов.

Искусственные клапаны сердца

Рекомендации пациентам с протезированным клапаном сердца 1.6 Мб

Искусственный клапан сердца: 2 основных типа

При нарушении работы какого-либо из 4 клапанов сердца — их сужении (стеноз) или чрезмерном расширении (недостаточности) — существует возможность их замены или реконструкции при помощи искусственных аналогов. Искусственный клапан сердца — это протез, который обеспечивает требуемое направление тока крови за счет прерывистого перекрывания устьев венозных и артериальных сосудов. Основным показанием к протезированию служат грубые изменения створок клапана, приводящие к выраженному нарушению кровообращения.

Применяются два основных типа искусственных клапанов сердца: механические и биологические модели, каждая из которых имеют свои особенности, преимущества и недостатки 1 .

Рисунок 1. Два основных типа искусственных клапанов

Механический клапан сердца или биологический протез?

Механический клапан сердца надежен, служит долго и не нуждается в замене, но требует постоянного приема специальных медикаментов, снижающих свертываемость крови.

Биологические клапаны постепенно могут разрушаться. Срок их службы в значительной степени зависит от возраста больного и сопутствующих заболеваний. С возрастом процесс разрушения биологических клапанов существенно замедляется.

Решение о том, какой клапан наиболее оптимален, должно приниматься перед хирургическим вмешательством в ходе обязательной беседы между хирургом и пациентом 2 .

Жизнь с искусственным клапаном сердца

Люди с протезами сердечных клапанов относятся к категории пациентов с очень высоким риском тромбоэмболических осложнений. Борьба с тромбозами — основа стратегии ведения таких пациентов, и именно ее успешность во многом определяет прогноз для больного.

Риск тромбоэмболических осложнений уменьшается при использовании биологических протезов клапанов, но они имеют свои недостатки. Их имплантируют нечасто и преимущественно пожилым людям 3 .

Жизнь с искусственным клапаном сердца требует ряда ограничений. Большинство пациентов с протезированными клапанами — это лица с механическими протезами, которые принадлежат к группе высокого риска развития тромботических осложнений. Пациент вынужден постоянно принимать антитромботические препараты, в абсолютном большинстве случаев — непрямые антикоагулянты (варфарин). Их должны принимать практически все пациенты с механическими клапанами сердца. Выбор биопротеза также не исключает необходимость приема варфарина, особенно у больных с фибрилляцией предсердий. Во избежание опасных кровотечений, постоянно принимающим варфарин пациентам лучше отказаться от повседневной деятельности и развлечений, связанных с повышенным риском получения травм (контактные виды спорта, работа с режущими предметами или с высоким риском падений даже с высоты собственного роста).

К наиболее важным аспектам врачебного наблюдения за пациентом с искусственным клапаном сердца на сегодняшний день относятся 4 :

  • контроль свертываемости крови;
  • активная профилактика тромбоэмболических осложнений с помощью антикоагулянтов (чаще всего варфарина).

Важно отметить, что в настоящее время европейские и американские эксперты считают слишком интенсивными те уровни антитромботической терапии, которые раньше рекомендовались для большинства пациентов. Современные подходы к оценке риска позволяют выделить подгруппы лиц с наиболее высоким риском тромбоэмболических осложнений и активной антитромботической терапией. Для других пациентов с протезированными сердечными клапанами достаточно эффективной будет менее агрессивная антитромботическая терапия 4 .

Профилактика тромбозов у пациентов с механическими клапанами сердца

Профилактика тромбоза у пациентов с механическим клапаном сердца требует пожизненной антитромботической терапии.

Интенсивность терапии варфарином зависит от локализации протеза и его типа. Например, в соответствии с рекомендациям ACC/AHA (2008) механический протез аортального клапана требует поддержания МНО в пределах 2,0-3,0 при использования двухлепестковых (двустворчатых) протезов, а также клапана Medtronic Hall (один из самых популярных в мире одностворчатых искусственных клапанов), или в дипазоне 2,5-3,5 для всех остальных дисковых клапанов, а также для шарового клапана Starr–Edwards.

Механический протез митрального клапана требует удержания МНО в рамках 2,5-3,5 для всех типов клапанов 3 .

Таблица 1. Рекомендуемое значение МНО при механических клапанах сердца 5

Позиция клапана сердца Факторы риска ТЭ-осложнений
отсутствуют присутствуют
Аортальная 2,0-3,0 2,5-3,5
Митральная 2,5-3,5 3,0-4,0

Однако даже на фоне рекомендованной антитромботической терапии риск тромбоэмболических осложнений у пациентов, перенесших протезирование клапанов сердца, остается на уровне 1-2 %. Результаты большинства клинических исследований свидетельствуют о том, что риск тромбоза выше у пациентов с протезами митральных клапанов (по сравнению с протезами аортальных). Если для пациентов с искусственными аортальными клапанами возможен менее интенсивный режим антикоагулянтной терапии (с целевым МНО 2,0-3,0), то в случае с механическим протезом митрального клапана режим антикоагулянтной терапии должен быть достаточно интенсивным (с целевым МНО 2,5-3,5) 6 .

Вне зависимости от типа используемого искусственного клапана риск тромбоза наиболее высок в первые несколько месяцев после операции – до завершения процессов эпителизации в месте имплантации протеза. Американские эксперты считают целесообразным удерживать МНО в рамках 2,5-3,5 в первые 3 мес. после операции даже для больных с искусственным аортальным клапаном 3 .

Кроме того, удержание МНО в более жестких рамках (2,5-3,5) рекомендуется ACC/AHA при наличии факторов высокого риска тромбоэмболизма вне зависимости от типа протеза и его локализации. К таким факторам относятся мерцательная аритмия, тромбоэмболия в анамнезе, дисфункция левого желудочка (ЛЖ), состояние гиперкоагуляции 7 .

В настоящее время существуют портативные аппараты для самостоятельного определения МНО (по типу систем для контроля уровня сахара у больных диабетом), которые помогают удерживать уровень МНО в необходимом диапазоне. Среди них зарекомендовал себя Coagucheck XS для самостоятельного проведения анализов и немедленного получения результатов ПТВ/МНО. Прибор позволяет получить точные результаты менее чем за минуту, используя при этом всего 8 мкл (одну каплю крови).

Тем не менее, независимо от выбранной стратегии антитромботического лечения после протезирования сердечных клапанов, принципиально важным остается регулярное наблюдение за пациентом, его обучение и тесное сотрудничество с лечащим врачом.

Это позволяет своевременно корректировать дозы препаратов, а также изменения их тромболитической активности в зависимости от особенностей питания, состояния функции печени и почек пациента.

Профилактика тромбоза у пациентов с биопротезами клапанов

Пациентам с биопротезами клапанов показана менее агрессивная антикоагулянтная терапия, поскольку в большинстве исследований риск тромбоэмболических осложнений у таких больных даже при отсутствии терпи антикоагулянтами составлял в среднем всего 0,7 %.

По мнению американских экспертов добавление варфарина может быть полезным при повышенном риске тромбоэмболий, но не рекомендуется рутинно всем пациентам. При использовании варфарина следует удерживать МНО в рамках 2,0-3,0, если протезирован аортальный клапан, и 2,5-3,5 — если митральный 3 .

Применение варфарина с целевым МНО 2,0-3,0 также может быть целесообразно в первые 3 мес. после операции и у больных с протезом митрального или аортального клапана без факторов риска, учитывая повышенную склонность к тромбообразованию в ранние сроки после протезирования клапана. Особые преимущества от такой стратегии получают пациенты с протезом митрального клапана 3 .

Таблица 2. Рекомендуемое значение МНО при биологических клапанах сердца

Позиция клапана сердца Факторы риска ТЭ-осложнений
отсутствуют присутствуют
Аортальная 2,0-2,5 2,5-3,0
Митральная 2,5-3,0 3,0-3,5
Трикуспидальная 2,5-3,0 3,0-3,5

Однако европейские эксперты ESC полагают, что в настоящее время нет достаточно убедительных данных, подтверждающих необходимость длительной антитромботической терапии у пациентов с биопротезами сердечных клапанов, если у этих пациентов нет каких-либо дополнительных факторов риска 7 .

В европейском руководстве использовать варфарин у таких больных рекомендуется только на протяжении первых 3 мес. после операции (целевое МНО — 2,5).

Длительная (пожизненная) антикоагулянтная терапия у пациентов с биопротезами клапанов может быть целесообразной только при наличии факторов высокого риска (например, мерцательной аритмии; в меньшей мере таким фактором риска может выступать сердечная недостаточность с ФВ ЛЖ

Одной из наиболее существенных проблем ведения таких пациентов в условиях отечественного здравоохранения является невозможность адекватного контроля показателей свертывания крови на фоне постоянного приема антикоагулянтов.

Именно показатель МНО рекомендован всеми международными руководствами как необходимый для обеспечения безопасности и эффективности терапии 7 .

Рекомендации пациентам с протезированным клапаном сердца 1.6 Мб

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: