Как проверить работоспособность индуктивного датчика?

Принцип работы и подключение индуктивных датчиков

Бесконтактный датчик индуктивности позиционируется как сенсор, способный реагировать на металлические предметы, оказавшиеся в его электромагнитном поле. Благодаря этому свойству индуктивных бесконтактных датчиков удается отслеживать перемещение подвижных частей оборудования и при необходимости отключать двигатель приводного механизма. Для распознавания и анализа изменений магнитного поля в их состав вводится специальный электронный узел, называемый контроллером (компаратором).

  1. Устройство и принцип действия
  2. Параметры индуктивных датчиков
  3. Виды выходов и способы подключения
  4. Маркировка при подключении
  5. Цветовая маркировка выводов
  6. Погрешности датчиков

Устройство и принцип действия

Индуктивный датчик LJ12A3-4-Z/BX (D-12мм)

Индукционные датчики положения, помимо электронного компаратора, содержат в своем составе следующие обязательные компоненты:

  • стальной корпус с разъемом для соединительного шнура;
  • встроенный чувствительный элемент, регистрирующий на изменения магнитного поля, выполнен в виде стального сердечника с катушкой;
  • исполнительный релейный модуль;
  • индикатор активации на светодиоде.

Конструкции различных моделей датчиков металла могут иметь некоторые отличия. Они не влияют на сам индукционный датчик, принцип работы его от этого не меняется.

Внутреннее строение индуктивного датчика перемещения

В соответствии с устройством прибора суть его работы описывается следующим образом:

  • перемещение металлической части контролируемого объекта приводит к изменению индуктивности чувствительного элемента датчика;
  • отклонение объясняется искажением его магнитного поля, следствием которого является изменение параметров электрической схемы и ее активация (светодиод загорается);
  • после этого срабатывает электронный модуль и посылает сигнал на исполнительное устройство;
  • при поступлении импульса о превышении перемещением допустимого предела выходной (релейный) узел отключает контролируемое оборудование от сети.

Каждая модель имеет собственный показатель чувствительности по перемещению — зазор смещения. Для различных образцов этот параметр варьируется в пределах от 1 микрона до 20 миллиметров.

Параметры индуктивных датчиков

Индуктивные датчики с различными характеристиками

Помимо диапазона срабатывания или чувствительности индуктивный датчик характеризуется следующими рабочими показателями:

  • Размер (диаметр) посадочной резьбы, у различных образцов принимающий значения от 8-ми до 30-ти мм.
  • Номинальное напряжение питания при температуре плюс 20 градусов, до 90 Вольт постоянного и до 230 Вольт – переменного токов.
  • Общая длина корпуса — ее значение зависит от рабочего напряжения.

Последний показатель у различных образцов может варьироваться в значительных пределах.

Для чувствительной или активной зоны прибора вводится еще один параметр, называемый гарантированным пределом срабатывания. Его нижняя граница равна нулю, а верхняя составляет 80 процентов от номинального значения. Этот показатель иногда называют поправочным коэффициентом рабочего зазора.

Не менее важный показатель функциональности чувствительного прибора – количество соединительных проводов в разъеме. Обычно их насчитывается два или три: два питающих и один для активации схемы. Однако возможны варианты подключения, при обустройстве которых используются четыре или пять контактных точек. Подобные образцы кроме двух питающих проводников содержат два выхода на нагрузку. При этом пятый проводник используется для выбора режима работы самого устройства.

Виды выходов и способы подключения

Для оценки действия чувствительного прибора вводится особая характеристика, оцениваемая по состоянию полярности его выходных параметров. В соответствии с общепринятым обозначением полупроводниковых элементов (транзисторов), входящих в состав электронной схемы датчика, эти выходы называются «PNP» и «NPN».

Отличие этих наименований состоит в том, что они обозначают различные полярности (полюса) источника питания чувствительных приборов. PNP транзисторы коммутируют его положительный выход, а NPN – отрицательный. Нагрузкой выходных схем чаще всего является управляющий микропроцессор.

Основные виды подключений разных индуктивных датчиков

В зависимости от схемы управления контроллером индуктивные датчики обозначаются как HO (нормально открытые) или HЗ – с нормально закрытым входом.

Вариант с NPN транзистором – наиболее распространенный способ включения датчика, поскольку согласно стандартным схемным решениям отрицательный провод делается общим для всех компонентов. В этом случае входы микропроцессоров и других контролирующих устройств активируются положительным напряжением.

Маркировка при подключении

На принципиальных схемах индуктивные датчики принято обозначать в виде ромба или квадрата с двумя вертикальными линиями внутри. Нередко в них также указывается тип выхода (нормально открытый или закрытый), соответствующий одной из разновидностей полупроводниковых транзисторов. В большинстве вариантов схем указывается нормально закрытая группа или оба типа в одном корпусе.

Цветовая маркировка выводов

Перед установкой датчика необходимо сверить данные с инструкцией

На практике применяется стандартная система маркировки выводов датчиков индуктивности, которой придерживаются все без исключения производители чувствительных приборов. Тем не менее, перед их монтажом рекомендуется внимательно следить за полярностью подключения и обязательно сверяться с прилагаемой к изделиям инструкцией.

На корпусах всех датчиков имеется рисунок с цветной маркировкой проводов, если это позволяют его размеры.

Стандартный порядок обозначения:

  • синий (Blue) всегда означает минусовую шину питания;
  • коричневым цветом (Brown) обозначается плюсовой проводник;
  • черный (Black) соответствует выходу датчика;
  • белый (White) – это дополнительный выход или вход.

Для уточнения последнего маркировочного обозначения его следует сверить с данными инструкции, прилагаемой к конкретному прибору.

Погрешности датчиков

Бесконтактный индуктивный датчик

Погрешность снятия показаний контрольной системой существенно влияет на работу бесконтактного индуктивного датчика. Ее общая величина набирается из отдельных ошибок измерений по различным показателям: электромагнитным, температурным, аппаратным, магнитной упругости и многим другим.

Электромагнитная погрешность определяется как случайно проявляющаяся величина. Она появляется из-за паразитной ЭДС, наведенной в катушке внешними магнитными полями. В производственных условиях этот компонент создается силовым оборудованием с рабочей частотой 50 Герц. Температурная погрешность – один из важнейших показателей, поскольку работать большинство датчиков могут лишь в определенном диапазоне температур. Она обязательно учитывается при проектировании устройств этого класса.

Погрешность магнитной упругости вводится как показатель нестабильности деформаций сердечника, возникающей в процессе сборки прибора, а также как тот же фактор, но проявляющийся при его работе. Нестабильности внутренних напряжений в магнитопроводе приводит к ошибкам в обработке выходного сигнала. Погрешность, возникающая в самом чувствительном устройстве, проявляется из-за влияния полевой структуры на коэффициент деформации металлических элементов датчика. Кроме того, на ее суммарное значение существенно влияют люфты и зазоры в подвижных частях конструкции.

Погрешность соединительного кабеля набирается из отклонений величины сопротивления его проводных жил в зависимости от температурного фактора, а также как наводки посторонних электромагнитных полей и ЭДС. Тензометрическая погрешность как случайная величина зависит от качества изготовления намоточных элементов датчика (его катушки, в частности). В различных условиях эксплуатации возможно изменение сопротивления обмотки по постоянному току, приводящее к «плаванию» выходного сигнала. Погрешность старения проявляется вследствие износа подвижных элементов датчика, а также изменения электромагнитных свойств магнитопровода.

Проверить реальную величину этого параметра удается только с помощью сверхточных измерительных приборов. При этом обязательно принимаются во внимание кинематические особенности самого датчика. При проектировании и изготовлении чувствительных элементов такая возможность заранее учитывается в его конструкции.

Для индуктивных и емкостных датчиков характерны режимы работы со многими факторами влияния, определяемыми конкретными условиями эксплуатации. Именно поэтому выбор подходящих для данной марки прибора чувствительности и набора выходных параметров является определяющим при его использовании в качестве конечного выключателя.

Применение датчиков в промышленном оборудовании. Часть II

В статье рассмотрен такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании встречаются повсеместно. Кроме того, описаны реальные датчики приближения — неотъемлемая часть работы инженера-электронщика, их плюсы, минусы и примеры применения. Часть первая опубликована в предыдущем номере (№ 5-6, 2017) журнала.

Индуктивные датчики

В первой части статьи были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным не все так просто. Нужно учитывать много нюансов: полярность, логика работы, напряжение.

Для примера показаны упрощенные схемы подключения датчиков с транзисторным выходом (рис. 1). Нагрузка, как правило, это вход контроллера.

Рис. 1, а — датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае — отрицательный провод источника питания. Нагрузка (Load) постоянно подключена к «плюсу» (+V). Здесь активный уровень (дискретный «1») на выходе датчика — низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Рис. 1, б — случай с транзистором PNP на выходе. Нагрузка (Load) постоянно подключена к «минусу» (0V), подача дискретной «1» (+V) коммутируется транзистором. Этот случай — наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим (нулевым), а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Напряжение на транзисторном выходе, как правило, определяется напряжением питания, обычно ограниченным узкими пределами. Например, от 18 до 30 В. На это можно посмотреть с другой стороны — сейчас большинство устройств стандартизовано по напряжениям.

Далее от теории перейдем к практическим вопросам.

Взаимозаменяемость датчиков

Как я уже писал в предыдущей части статьи, есть четыре вида датчиков с транзисторным выходом, которые подразделяются по внутреннему устройству и схеме включения: PNP NO; PNP NC; NPN NO; NPN NC.

Бывает, что нужного типа датчика нет под рукой, а оборудование должно работать без простоя! Хорошая новость — перечисленные типы датчиков можно заменить друг на друга.

Это реализуется следующими способами:

  • Переделка устройства инициации — механически меняется конструкция. Например, если NO датчик реагировал на наличие металла, то NC будет реагировать на его отсутствие. Если выход той же полярности, то не изменится ни программа, ни алгоритм работы.
  • Изменение имеющейся схемы включения датчика (рассмотрим подробнее ниже).
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы контроллера (изменение активного уровня входа, изменение алгоритма программы).
Читайте также  Можно ли клавиатуру подключить к монитору?

Естественно, производители умалчивают о таких возможностях, чтобы продавать большое количество и номенклатуру изделий. Ниже приведен пример, как можно заменить датчик PNP на NPN, изменив схему подключения (рис. 2).

Понять работу этих схем поможет осознание того факта, что транзистор — это ключевой элемент, который можно представить обычными контактами реле.

На рис. 2, а показана схема датчика с нормально открытым выходом типа PNP. Когда датчик не активен, его выходные «контакты» разомкнуты, и ток через них не протекает. И наоборот, если контакты замкнуты, то протекающий ток создает падение напряжения на нагрузке.

При активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Смотрим на изменения в схеме на рис. 2, б. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 4,7–10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется.

Когда датчик активен, на входе контроллера дискретный «0», поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Как отремонтировать и проверить индуктивный датчик?

Ремонту датчики приближения практически не подлежат, поскольку имеют цельный корпус, залитый компаундом. К тому же, большинство поломок связано с механическими повреждениями из-за неаккуратного персонала или сдвига активатора.

Чтобы проверить датчик электрически, нужно подать на него питание, то есть подключить его в схему, а затем активировать (инициировать). При активации должен загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку и измерить напряжение на ней, чтобы быть уверенным на 100%.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают квадратом с двумя линиями в нем, повернутым на 45°. Пример на рис. 3.

На верхней схеме нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема — нормально закрытый, и третья схема — оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются ее.

  • Синий (Blue) — минус питания.
  • Коричневый (Brown) — плюс питания.
  • Черный (Black) — выход.
  • Белый (White) — второй выход, или вход управления.

Однако непосредственно перед монтажом нелишним будет убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Конкретный производители

Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.

«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.

Рис. 4 — Пример применения индуктивного датчика «TEKO»

В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.

AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.

На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.

Рис. 5 — Пример модернизации спаивающей головки упаковочной линии

В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.

OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.

На рис. 6 — датчики показывают положение механизма редуктора.

Рис. 6 — Датчик показывает положение механического редуктора.

В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.

ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).

Рис. 7 — Дитчик Allen Bradley

Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!

Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.

Практические схемы включения датчиков

Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.

Здесь же я отдельно вынес такой важный практический вопрос, как подключение индуктивных датчиков с транзисторным выходом, которые в современном промышленном оборудовании – повсеместно. Кроме того, приведены реальные инструкции к датчикам и ссылки на примеры.

Принцип активации (работы) датчиков при этом может быть любым – индуктивные (приближения), оптические (фотоэлектрические), и т.д.

В первой части были описаны возможные варианты выходов датчиков. По подключению датчиков с контактами (релейный выход) проблем возникнуть не должно. А по транзисторным и с подключением к контроллеру не всё так просто.

Рекомендую тем, кто интересуется, также мою статью про параллельное подключение транзисторных выходов.

Схемы подключения датчиков PNP и NPN

Отличие PNP и NPN датчиков в том, что они коммутируют разные полюсы источника питания. PNP (от слова “Positive”) коммутирует положительный выход источника питания, NPN – отрицательный.

Ниже для примера даны схемы подключения датчиков с транзисторным выходом. Нагрузка – как правило, это вход контроллера.

PNP выход датчика. Нагрузка (Load) постоянно подключена к “минусу” (0V), подача дискретной “1” (+V) коммутируется транзистором. НО или НЗ датчик – зависит от схемы управления (Main circuit)

NPN выход датчика. Нагрузка (Load) постоянно подключена к “плюсу” (+V). Здесь активный уровень (дискретный “1”) на выходе датчика – низкий (0V), при этом на нагрузку подается питание через открывшийся транзистор.

Призываю всех не путаться, работа этих схем будет подробно расписана далее.

На схемах ниже показано в принципе то же самое. Акцент уделён на отличия в схемах PNP и NPN выходов.

Схемы подключения NPN и PNP выходов датчиков

На левом рисунке – датчик с выходным транзистором NPN. Коммутируется общий провод, который в данном случае – отрицательный провод источника питания.

Справа – случай с транзистором PNP на выходе. Этот случай – наиболее частый, так как в современной электронике принято отрицательный провод источника питания делать общим, а входы контроллеров и других регистрирующих устройств активировать положительным потенциалом.

Как проверить индуктивный датчик?

Для этого нужно подать на него питание, то есть подключить его в схему. Затем – активировать (инициировать) его. При активации будет загораться индикатор. Но индикация не гарантирует правильной работы индуктивного датчика. Нужно подключить нагрузку, и измерить напряжение на ней, чтобы быть уверенным на 100%.

Замена датчиков

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Все эти типы датчиков можно заменить друг на друга, т.е. они взаимозаменяемы.

Это реализуется такими способами:

  • Переделка устройства инициации – механически меняется конструкция.
  • Изменение имеющейся схемы включения датчика.
  • Переключение типа выхода датчика (если имеются такие переключатели на корпусе датчика).
  • Перепрограммирование программы – изменение активного уровня данного входа, изменение алгоритма программы.

Ниже приведён пример, как можно заменить датчик PNP на NPN, изменив схему подключения:

PNP-NPN схемы взаимозаменяемости. Слева – исходная схема, справа – переделанная.

Понять работу этих схем поможет осознание того факта, что транзистор – это ключевой элемент, который можно представить обычными контактами реле (примеры – ниже, в обозначениях).

Итак, схема слева. Предположим, что тип датчика – НО. Тогда (независимо от типа транзистора на выходе), когда датчик не активен, его выходные “контакты” разомкнуты, и ток через них не протекает. Когда датчик активен, контакты замкнуты, со всеми вытекающими последствиями. Точнее, с протекающим током через эти контакты)). Протекающий ток создает падение напряжения на нагрузке.

Внутренняя нагрузка показана пунктиром неспроста. Этот резистор существует, но его наличие не гарантирует стабильную работу датчика, датчик должен быть подключен к входу контроллера или другой нагрузке. Сопротивление этого входа и является основной нагрузкой.

Если внутренней нагрузки в датчике нет, и коллектор “висит в воздухе”, то это называют “схема с открытым коллектором”. Эта схема работает ТОЛЬКО с подключенной нагрузкой.

Так вот, в схеме с PNP выходом при активации напряжение (+V) через открытый транзистор поступает на вход контроллера, и он активизируется. Как того же добиться с выходом NPN?

Бывают ситуации, когда нужного датчика нет под рукой, а станок должен работать “прям щас”.

Смотрим на изменения в схеме справа. Прежде всего, обеспечен режим работы выходного транзистора датчика. Для этого в схему добавлен дополнительный резистор, его сопротивление обычно порядка 5,1 – 10 кОм. Теперь, когда датчик не активен, через дополнительный резистор напряжение (+V) поступает на вход контроллера, и вход контроллера активизируется. Когда датчик активен – на входе контроллера дискретный “0”, поскольку вход контроллера шунтируется открытым NPN транзистором, и почти весь ток дополнительного резистора проходит через этот транзистор.

Читайте также  Как узнать уровень заряда пульта Apple TV?

В данном случае происходит перефазировка работы датчика. Зато датчик работает в режиме, и контроллер получает информацию. В большинстве случаев этого достаточно. Например, в режиме подсчета импульсов – тахометр, или количество заготовок.

Да, не совсем то, что мы хотели, и схемы взаимозаменяемости npn и pnp датчиков не всегда приемлемы.

Как добиться полного функционала? Способ 1 – механически сдвинуть либо переделать металлическую пластинку (активатор). Либо световой промежуток, если речь идёт об оптическом датчике. Способ 2 – перепрограммировать вход контроллера чтобы дискретный “0” был активным состоянием контроллера, а “1” – пассивным. Если под рукой есть ноутбук, то второй способ и быстрее, и проще.

Условное обозначение датчика приближения

На принципиальных схемах индуктивные датчики (датчики приближения) обозначают по разному. Но главное – присутствует квадрат, повёрнутый на 45° и две вертикальные линии в нём. Как на схемах, изображённых ниже.

НО НЗ датчики. Принципиальные схемы.

На верхней схеме – нормально открытый (НО) контакт (условно обозначен PNP транзистор). Вторая схема – нормально закрытый, и третья схема – оба контакта в одном корпусе.

Цветовая маркировка выводов датчиков

Существует стандартная система маркировки датчиков. Все производители в настоящее время придерживаются её.

Однако, нелишне перед монтажом убедиться в правильности подключения, обратившись к руководству (инструкции) по подключению. Кроме того, как правило, цвета проводов указаны на самом датчике, если позволяет его размер.

Вот эта маркировка.

  • Синий (Blue) – Минус питания
  • Коричневый (Brown) – Плюс
  • Чёрный (Black) – Выход
  • Белый (White) – второй выход, или вход управления, надо смотреть инструкцию.

Система обозначений индуктивных датчиков

Тип датчика обозначается цифро-буквенным кодом, в котором зашифрованы основные параметры датчика. Ниже приведена система маркировки популярных датчиков Autonics.

Система обозначений датчиков Autonics

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1760 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2289 раз./

• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1766 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2295 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3567 раз./

Скачать книгу про датчики

Реальные датчики

Датчики купить проблематично, товар специфический, и в магазинах электрики такие не продают. Как вариант, их можно купить в Китае, на АлиЭкспрессе.

А вот какие оптические датчики я встречаю в своей работе.

Всем спасибо за внимание, жду вопросов по подключению датчиков в комментариях!

Как проверить датчик коленвала?

Каждый автовладелец отлично осведомлен, насколько для работоспособности автомобиля важен датчик положения коленвала (ДПКВ). Также его еще иногда, благодаря тому, что с его помощью синхронизируется работа электронного блока управления двигателем, данный прибор называют датчиком синхронизации.

При возникновении поломок в работе описанного датчика, невозможно запустить двигатель либо же в его работе будет происходить сбой, способный привести к полной остановке (уменьшение мощности, сбои в оборотах). Также данный датчик отвечает за синхронизацию подачи топлива при повороте ключа в замке зажигания.

Признаки неправильной работы датчика коленвала:

— заметное понижение его динамических характеристик в процессе движения машины (конечно же, у данной проблемы могут быть различные причины, но именно об этой неисправности сообщит контроллер, который зафиксирует проблему и зажжёт «check engine» на панели приборов).
— мотор самопроизвольно понижает или повышает обороты;
— на холостом ходу нет устойчивости в оборотах;
— возникновение детонации в двигателе во время динамической нагрузке;
— невозможность запустить двигатель.

Приведены лишь основные характерные показатели поломок датчика оборотов коленвала, шкива привода ГРМ или генератора.

Изначально необходимо для себя понимать, каким образом можно осуществить качественную проверку его работоспособности и быть стопроцентно уверенным, что все в порядке. Для чего такую проверку необходимо осуществлять всегда первой?

Все достаточно несложно. Несмотря на то, что в большинстве автомобилей данный датчик расположен не в самом удобном месте, его проверка исправности отнимет у вас совсем мало ресурсов и времени. После же проверки вам станет абсолютно ясно, нужно ли заменить датчик.

Как осуществить проверку датчика коленвала?

Проверить исправность данного датчика (ДПКВ) можно несколькими способами. Для каждого варианта вам понадобятся воспользоваться определенными приборами. Наиболее часто применяются три основных подхода к проверке работоспособности датчика оборотов коленвала, рассмотрим их.

Исходя из советов профессионалов, всегда перед проверкой датчик коленвала необходимо демонтировать, не забыв, при этом обозначить метками его изначальное расположение на двигателе. Понятно, что после снятия необходимо произвести визуальный осмотр датчика. Результаты визуального осмотра дают возможность обнаружить повреждения на нем, понять состояние контактной колодки, сердечника самих контактов. Загрязнения следует удалить, используя спирт или бензин. У датчика коленвала должны быть чистые контакты.
В процессе демонтажа необходимо установить расстояние от сердечника датчика до диска синхронизации. Оно должно варьироваться от 0,6 мм до 1,5 мм.
При отсутствии видимых проблем можно переходить к обнаружению скрытых в электрической схеме данного устройства.

Диагностика датчика с использованием омметра

Для измерения сопротивления обмотки датчика коленвала можно использовать омметр (мультиметр). Правильно функционирующий датчик покажет значения от 550 до 750 Ом.

Такая проверка тестером (мультиметром) заключается в проверке сопротивления катушки индуктивного датчика. Поскольку при поврежденной катушке, характеристики датчика отобразятся в первую очередь на сопротивлении. Устанавливаем нужный диапазон и проверяем щупами на выводах. Такая проверка самая элементарная и простая, по этому не может дать 100% уверенности что диагноз датчику поставлен правильно.

Если вы хотите не сомневаться в собственных действиях, перед началом работ изучите внимательно инструкцию к вашему автомобилю. Когда же, полученные вами, показатели измерений не соответствуют заявленному интервалу, необходимо произвести замену датчика оборотов коленвала.

Второй подход к проверке работоспособности ДПКВ является более трудоемким и для его проведения вам уже понадобиться больше приборов:

— мегаомметр;
— сетевой трансформатор;
— измеритель индуктивности;
— вольтметр (желательно цифровой);

Температура воздуха в помещении имеет значение для корректности получаемых показателей, предпочтительнее 20-22 градуса. Сопротивление обмотки, как и указывалось ранее, измеряем омметром.

Далее переходим к измерению индуктивности обмотки с применением специально измерителя. У нормального датчика она должна равняться 200-400 мГн.

Далее, используя мегомметр, переходим к измерению сопротивления изоляции. Если напряжение будет составлять 500В, данный параметр не может превышать 20 МОм.

При возникновении случайного намагничивания диска синхронизации из-за ремонта датчика, следует обязательно произвести его размагничивание, используя сетевой трансформатор.

Анализируя все, полученные в результате данных измерений, показатели, вы сможете сделать заключение о работоспособности датчика коленвала или же необходимости провести его замену.
Не забудьте при установке на место нового или старого прибора, внимательно ориентироваться на метки, оставленные вами при демонтаже, помня о необходимости наличия расстояния 0,5-1,5 мм от сердечника до диска синхронизации.

Третий способ диагностики датчика оборотов коленвала является наиболее точным и применяется на профессиональных станциях. Он требует наличие осциллографа и программы. При нем нет необходимости в демонтаже с двигателя прибора. Поскольку позволяет увидеть формирование сигнала. Наличие цифрового осциллографа позволяет специалистам эффективно обнаруживать различные проблемы в системе впрыска.

Диагностика сигнала с выхода датчика осциллографом

Для получения корректных показателей необходимо черный зажим осциллографа, называемый «крокодил», подключить к массе двигателя проверяемого автомобиля, пробник щупа установить параллельно сигнальному выводу датчика. Второй разъем щупа осциллографа следует подключить к аналоговому входу № 5 USB Autoscope II. Данные манипуляции необходимо выполнить для того, чтобы увидеть осциллограммы напряжения сигнала на входе датчика положения коленвала.

Далее необходимо выбрать режим для показа осциллограмм «Inductive_Crankshaft». Теперь можно запускать автомобиль. Если же запуск его двигателя невозможен, необходимо покрутить двигатель стартером.

Когда сигнал от датчика положения коленвала присутствует, но его выходные параметры не совпадают с нормальными, может наблюдаться подергивание машины, затрудненный пуск ее двигателя, провалы… Подобные нарушения характеристик выходного сигнала датчика коленвала служат свидетельством имеющихся неисправностей либо самого датчика, либо же задающего синхродиска и поломки зубцов. Истинность предположений о неисправности станет понятна при рассмотрении характера волны на осциллограмме синхроимпульсов напряжения, снятых на выходе датчика положения коленвала.

Читайте также  Сколько антифриза Киа Рио 3?

Вы ознакомились с тремя возможными способами проверки датчика коленвала:

— проверка мультиметром (сопротивление обмотки);
— проверка тестером (сопротивления изоляции и индуктивности);
— проверка на осциллографе.

Способ проверки каждый выбирает сам по своим возможностям и знаниям. Будьте объективны в полученных результатах, а также предельно внимательны и осторожны при проверке.


Как проверить датчик коленвала?

    114 2 114k

Датчик положения коленвала предназначен для синхронизации системы зажигания и работы топливных форсунок в бензиновой инжекторном двигателе. Соответственно, его поломка приведет к тому, что зажигание будет спешить или запаздывать. Это приведет к неполному сгоранию топливной смеси, нестабильной работе двигателя или полном его отказе.

В настоящее время существует три типа датчиков — индукционные, на основе эффекта Холла, а также оптические. Однако самыми распространенными являются датчики, относящиеся к первому типу (индукционные). Далее мы поговорим с вами о возможных неисправностях и методы их устранения.

Признаки неисправности датчика коленвала

Независимо от того, по какой технологии работает ДПКВ, признаки неисправностей в его работе всегда одинаковы. Если не работает датчик коленвала, то об этом вам скажут следующие признаки:

Датчик коленвала который будет давать сбой из-за большого количества металлической стружки

  • значительное снижение динамических характеристик машины (хотя этот фактор может быть следствием и других поломок, все же стоит провести диагностику ДПКВ);
  • произвольно меняются обороты двигателя в движении;
  • в холостом режиме обороты мотора «плавают»;
  • во время динамической нагрузки в двигателе возникает детонация;
  • при полном выходе из строя ДПКВ, становится невозможно запустить двигатель.

Далее вкратце остановимся на устройстве датчика коленвала для того, чтобы лучше понять причины возникновения неисправностей и методы их устранения.

Устройство датчика коленвала

Для того чтобы понять работу и ошибки ДПКВ в первую очередь необходимо разобраться с принципом работы датчика. Он представляет собой конструкцию из стального сердечника, обмотанного медным проводом, помещенного в пластмассовый корпус. Все провода изолированы друг от друга компаундной смолой.

Датчик положения коленвала/распредвала. Устройство и назначение

Видео лекция об устройстве и назначению датчика положения коленвала/распредвала. Функциональные особенности и выход из строя датчиков положения коленчатого вала и распределительного вала (ДПКВ и ДПРВ).
Подробнее

Задача устройства — фиксировать прохождение возле датчика металлических зубьев шкива. На нем есть 60 зубьев, 2 из которых отсутствуют. Именно прохождение этого пустого промежутка должен зафиксировать датчик. Это дает возможность синхронизировать работу системы зажигания и системы питания с тем, чтобы обеспечить правильную последовательность подачи топлива через форсунки. Это необходимо для создания оптимальной топливной смеси.

Перед тем как перейти непосредственно к описанию принципа работы датчика коленвала необходимо указать, что всего существует три их разновидности. В частности:

  • Индукционный датчик. В его основе лежит использование намагниченного сердечника, вокруг которого намотана медная проволока (катушка), концы которой выведены для фиксации изменения напряжения. Именно такой тип датчика чаще всего устанавливается в современных машинах.
  • Оптический датчик работает на основе светодиода, который излучает световой луч и приемника, фиксирующего этот луч с другой стороны. При прохождении контрольного зуба луч прерывается, что фиксируется контрольным прибором. Информация о частоте вращения передается на ЭБУ.
  • Датчик Холла. Он основан на одноименном физическом эффекте. Так, на коленвале установлен магнит, который фиксируется датчиком, в котором в этот момент начинается движение постоянного тока, что фиксируется синхронизирующим диском. Подробнее об этом вы можете почитать в следующей статье.

Далее перейдем к рассмотрению неисправностей.

Три способа как проверить датчик коленвала

Мы поговорим с вами о том, как сделать проверку индуктивного датчика, поскольку, как было указано выше, именно такой тип наиболее распространен на современных автомобилях. Итак, переходим к рассмотрению диагностики.

Проверка OBD-2 сканером

В дороге, быстрее всего выявить сбой поможет диагностический сканер. Самым доступным и популярным является корейский Scan Tool Pro Black Edition.

Как выглядит диагностический сканер

Ошибка датчика коленвала при диагностике

Если при визуальном осмотре вы не заметили грязи и стружки на торце ДПКВ (очистить можно бензином или спиртом), то стоит подключить OBD2 сканер к автомобилю и любым гугл приложением подключится по Wi-Fi или Bluetooth с телефона к ЭБУ автомобиля. Самые популярные приложения на смартфон:

  • Torque (максимальная совместимость с возможностями сканера);
  • Auto Doktor OBD;
  • MobileOpenDiag;
  • InfoCar — OBD2.

Диагностические коды неисправности (DTC) датчика коленчатого вала — P0335 или P0336 в зависимости от того поступает ли вообще сигнал с датчика и удается ли обнаруживать на задающем зубчатом диске синхронизирующий выступ. Также в режиме реального времени можно посмотреть количество оборотов двигателя и есть ли синхронизиронизация фаз зажигания по периоду импульса сигнала напряжения.

Но, так как возможность проверить сканером есть не у всех, то все же предлагаем более детально остановится на проверке датчика КВ мультиметром и осциллографом, он дает самый точный анализ его работоспособности. Перед тем как снять датчик с его посадочного места, не забудьте обозначить метками его положение на двигателе. Это избавит вас от проблем при повторном его монтаже.

Проверка сопротивления омметром

Проверка ДПКВ с помощью омметра и осциллографа

Это наиболее простой метод проверки своими руками, однако он не дает 100% гарантии того, что такая проверка выявит неисправность. Для этой процедуры вам понадобится мультиметр, который вы должны переключить в режим измерения сопротивления (омметр). С его помощью нужно измерить сопротивление катушки индуктивности. Сделать это можно, просто прикоснувшись щупами мультиметра попарно к выводам катушки. Полярность в данном случае не имеет значения.

Как правило, значение сопротивления большинства катушек находится в пределах 500. 700 Ом. Однако точное значение лучше почитать в документации к датчику или найти в интернете. Соответственно, на мультиметре нужно устанавливать верхний предел — 2 кОм (предел может различаться у разных моделей мультиметров, главное, чтобы он был больше измеряемого и наиболее близок к нему). Если в результате замера вы получили значение, близкое к обозначенному выше, значит, с катушкой все в порядке. Однако успокаивать себя еще рано, ведь такая проверка не полная. Лучше продолжить проверку с помощью других методов.

Проверка значения индуктивности

Любая катушка в возбужденном состоянии имеет свою индуктивность. Это же касается и той, которая встроена в корпус ДПКВ. Метод проверки заключается в измерении этого значения. Для этого вам понадобится:

  • мегаомметр;
  • сетевой трансформатор;
  • измеритель индуктивности;
  • вольтметр (желательно цифровой).

Некоторые мультиметры имеют встроенную функцию измерения индуктивности. Если же у вашего прибора ее нет, то стоит воспользоваться дополнительным оборудованием. В любом случае измеренное значение индуктивности катушки ДПКВ должно находиться в пределах 200. 400 мГн (в отдельных случаях может незначительно отличаться). Если вы получили значение, которое сильно отличается от указанного, то велика вероятность того, что датчик неисправен.

Далее нужно измерить сопротивление изоляции между провода катушки. Для этого используют мегаомметр, установив на нем выдаваемое напряжение, равное 500 В. Процедуру замера лучше проводить 2-3 раза для получения более точных данных. Измеренное значение сопротивления изоляции не должно быть ниже 0,5 МОм. В противном случае можно констатировать нарушение изоляции в катушке (в том числе возможность появления межвиткового короткого замыкания). Это указывает на неисправность прибора. Размагничивание катушки необходимо провести с помощью сетевого трансформатора. Однако самый совершенный метод диагностики ДПКВ заключается в использовании осциллографа.

Проверка с помощью осциллографа

Осциллограмма на работающем двигателе. Красным обозначено прохождение места без зубьев

С помощью этого метода можно не только узнать контролируемые значения, но и увидеть процесс формирования сигналов. Это дает исчерпывающую информацию о состоянии и работе ДПКВ. Лучше проводить его на работающем двигателе. Однако можно и снять датчик. Для работы вам понадобится электронный осциллограф и программное обеспечение для работы с ним. Проверка со снятым датчиком проходит по следующему алгоритму:

  1. Подсоединить щупы осциллографа к выводам катушки ДПКВ. Полярность не имеет значения.
  2. Запустить программу для работы с осциллографом.
  3. Взять любой металлический предмет и помахать им перед ДПКВ.
  4. Если датчик исправен, то одновременно с этим на экране будет воспроизводиться осциллограмма, которая будет строиться по данным от датчика.

Если датчик зафиксировал перемещения металлического предмета, значит, он, скорее всего исправен. Однако точный диагноз можно поставить лишь при подключении осциллографа к датчику с работающим двигателем. Это делается просто, подключив щупы параллельно к выводам датчика. Полученная таким образом осциллограмма даст вам информацию о формирующихся сигналах.

Итоги

Датчик положения коленвала индуктивного типа — несложное, однако очень важное устройство. При описанных выше признаках неисправности обязательно проведите его диагностику. Какой метод выбрать, зависит от наличия в вашем распоряжении необходимых приборов и инструментов. Советуем вам начать с простейшего метода по измерению сопротивления катушки. Если у вас нет описанных выше инструментов и приборов, то отгоните машину на СТО, где мастера проведут для вас полную диагностику.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: