Какой зарядкой лучше заряжать электромобиль?

Зарядка электромобиля: где заряжать, время зарядки и сколько стоит

Еще не так давно мысль о появлении электромобилей, передвигающихся за счёт электричества и заряжаемых от розетки, казалась фантастикой, однако такие транспортные средства постепенно вход в быт людей, набирая, пусть и неспешно, популярность по всему миру. Каждый покупатель подобного авто, помимо выбора модели, должен заранее решить, как он будет заряжать аккумулятор, поскольку без этой процедуры эксплуатация машины окажется невозможной.

Способы и типы зарядки электромобилей

Электрокары в настоящее время всё же распространены пока ещё не так, как транспортные средства с двигателями, работающими на бензине или дизельном топливе, поэтому производители продолжают работать над совершенствованием технологии зарядки.

Зарядка электромобиля возможна одним из четырех способов:

  1. С помощью обыкновенной розетки с напряжением 220 В. Правда, данный вариант используется всё реже ввиду своей ненадежности.
  2. От бытовой электросети, через которую проходит переменный ток. Этот способ более предпочтителен, чем предыдущий, поскольку кабель, покупаемый вместе с машиной, имеет внутри специальную защиту.
  3. Трехфазная зарядка, являющаяся самой безопасной. Её основное преимущество – возможность полного контроля над процессом.
  4. Быстрая зарядка электрокара. Разработаны зарядные станции, позволяющие за короткий промежуток времени (примерно за полчаса) подзарядить батарею. У способа есть как сильные, так и слабые стороны. У некоторых моделей (например, Nissan Leaf) аккумулятор можно зарядить на 80% за 30 минут, однако последующая полная зарядка в таком случае займет чуть больше времени, чем обычно.

Для жителей стран с теплым климатом разрабатывается вариант зарядки от солнечных батарей и ветровых генераторов.

Теория процесса зарядки

Прежде чем разбираться, как зарядить авто, стоит вспомнить основные понятия об электрическом токе из школьного курса физики.

Ёмкость измеряется в киловатт-часах. Например, если ёмкость равняется 90 кВт/ч, для зарядки потребуется подавать 90 кВт один час или 90 часов подавать 1 кВт. Но так дело обстоит в теории, на практике же существуют потери, поэтому заряжаться аккумулятор не всегда будет с одной и той же скоростью, принцип при этом останется таким же.

Для обеспечения быстрой зарядки не обойтись без применения устройства пропускной способностью выше среднего.

В стандартной розетке на 220В сила тока не превышает 16А, соответственно, если эту величину умножить на напряжение, то можно узнать мощность потребления, которая составит максимум 3,5 кВт.

Трехфазная розетка имеет в каждой из своих фаз 220В при тех же самых 16А. Получается, что мощность в случае её использования составит уже 10,5 кВт (220х3х16). Однако для установки в жилом доме такой розетки потребуется специальное разрешение, согласованный проект и проложенные кабели. Поэтому еще до покупки электрокара необходимо определиться со способом его зарядки и подготовиться к этой процедуре, которая станет регулярной.

Где зарядить электромобиль

Уличные зарядные станции существуют далеко не во всех российских городах, хотя их количество увеличивается. Поэтому стоит заранее позаботиться о способе зарядке.

С большинством моделей в комплекте поставляется соединительный кабель. Нередко производитель укомплектовывает автомобиль адаптером как для обычной, так и для трехфазной розеток.

Безусловно, лучше использовать трехфазную розетку, так как от розетки на 220В время зарядки увеличится (аккумулятор на 85 кВт/ч от обычной розетки будет заряжаться около 33 часов, от трехфазной – в 4 раза быстрее).

В продаже также имеются зарядные станции, которые бывают настенными (их удобно монтировать в гаражах) и стационарными в виде столба, устанавливаемого на улице. В состав таких станций входят зарядка с силовым кабелем, защитный кожух, элементы крепления, дисплей (с его помощью можно получить информацию о процессе зарядки) и некоторые другие составные части в зависимости от модели агрегата и производителя. Многие станции изначально задумывались как универсальные, чтобы подходить к большинству существующих моделей электрокаров.

Сам процесс зарядки крайне прост: нужно всего лишь достать соединительный кабель и вставить его одним концом в розетку, а другим – в разъем, находящийся в машине. Очень важно, чтобы розетка была заземлена, иначе процесс просто не начнется (автомобиль автоматически определит отсутствие заземления).

Сколько стоит зарядить электромобиль

Вопрос цены транспортного средства, а также расходов при его эксплуатации является для подавляющего большинства автолюбителей весьма актуальным.

Стоимость зарядки будет зависеть от цены на электричество (в разных регионах России тарифы отличаются) и особенностей конкретной модели авто. Расход электрической энергии в электрокарах измеряется в кВт-часах на километр пробега.

Все существующие на текущий момент времени модели расходуют в среднем 30 кВт/ч на 160 км пути (к примеру, именно столько потребляет Nissan Leaf, а вот Tesla Model S понадобится на преодоление аналогичного расстояния чуть больше энергии – 35 кВт).

Нужно понимать, что КПД ни одного из зарядных устройств не составляет 100%, при этом батарея максимум заряжается на 90%, что сделано для увеличения срока её службы. Получается, что для зарядки аккумулятора на 85 кВт/ч понадобится 100 кВт/ч энергии. На каждые 100 км пути потребуется около 30 кВт/ч: при цене кВт/ч 5-6 рублей затраты составят 150-180 рублей.

Выводы

Резюмируя все вышесказанное, стоит выделить следующие моменты, о которых должен знать будущий владелец электромобиля:

  • зарядка от стандартной розетки потребует заземления и большого количества часов;
  • наличие трехфазной розетки позволит зарядить батарею за 8 часов, но для её установки понадобится технически грамотно составленный проект с согласованием в соответствующих инстанциях;
  • отсутствие места с розеткой для зарядки сделает эксплуатацию электрокара практически невозможной;
  • дальние поездки на электромобиле без сети быстрых заправок на сегодняшний день недоступны.

Видео по теме

Топ типов зарядных устройств и разъемов для электромобиля

Задумывались ли вы над тем, почему современные электромобили стоят дороже аналогичного по характеристиками бензинового автомобиля? Любая новая технология в начале массового производства стоит дороже схожей по показателям, но настроенной на выпуск в больших количествах. Массовость выпуска комплектующих снижает себестоимость товара. Следующий фактор — унификация. Большинство современных автомобилей используют запчасти совместимые с большинством автомобилей. Уже никого не удивляет одинаковый формат свечей зажигания или строение камер сгорания двигателя, размерность колес или ширина горловины топливного бака. Технологии прошли ряд испытаний на живучесть в суровой конкурентной борьбе и проверку временем.

Как в свое время автомобили на углеводородах эволюционировали в современный традиционный вид транспорта, так и электромобили сейчас проходят жесткий этап естественного отбора. Производители, с оглядкой друг на друга, пытаются создать наиболее эффективную технологию использования электричества для приведения все тех же четырех колес в движение. Уникальная технология — штучный товар с претензией на лидерство.

Не стал исключением и такой важный аксессуар современного электромобиля, как зарядное устройство. При покупке электромобиля, покупателю необходимо знать, с каким типом устройства ему придется иметь дело, где его можно подключить и как правильно использовать.

Чтобы разобраться во множестве современных зарядок и принципах их работы мы подготовили обзор современных зарядных устройств.

Типы зарядных станций

Любое зарядное устройство призвано наполнять батарею электромобиля постоянным током. Большинство зарядных устройств преобразовывают переменный ток сети в постоянный. Но существуют специальные станции, которые за считанные минуты передают постоянный ток станции напрямую в батарею, без преобразователя. Процесс зарядки может занимать разное время в зависимости от мощности устройства и его пропускной способности. На время подзарядки также влияют сила тока, емкость батареи и напряжение в сети.

Современные электрокары заряжаются в среднем за 2-3 часа от специальной зарядной станции или за 8-10 часов от сети переменного тока от стационарной розетки.

Стандарты зарядок в Европе и США

На сегодня существует несколько стандартов зарядных станций. Наибольшую распространенность в мире получили европейские и американские зарядные типы.

В США принято использовать три разновидности зарядок в зависимости от уровня мощности :

Level 1

Такие устройства заряжают электромобили от сети переменного тока силой до 16А и напряжением 120 В при подключении к обычной бытовой розетке. Поскольку они способны обеспечивать не более 3 кВт мощности, время для заполнения батареи может занимать 8-12 часов.

В настоящее время такой тип зарядок уже не выпускается. Адаптер первого уровня идет в комплекте с электромобилем и представляет собой кабель с обычной вилкой на одном конце и специальным коннектором типа J1772 — на другом.

Level 2

Зарядные устройства этого типа вырабатывают 7 кВт мощности, при силе тока 30А и напряжении 240 Вольт. Для полного заряда батареи электромобиля требуется около 20-22 кВт.ч и примерно 4-6 часов часа времени. Однако, не все модели авто могут адекватно воспринять такую мощность.

Level 3

Для наполнения батареи до 80% от зарядки третьего самого мощного (50кВт) уровня требуется не более получаса, поскольку она способна выдавать напряжение от 300 до 600 В и силу тока 100 А. Наполнение такой батареи можно сравнить с наполнением стаканов водой из пожарного шланга: заполнив стаканы на 80% вам потребуется существенно снизить мощность потока, осторожно заполняя до краев оставшиеся 20%, для чего вам потребуется пять-восемь раз больше времени.

Европейская классификация зарядок подразделяется на режимы или modes.

Mode1

Соответствует американскому “Первому уровню” и способна отдавать 240 Вольт с силой тока 16 Ампер. Время зарядки длится 10-12 часов.

Mode 2

При схожем напряжении с Mode 1 , сила тока в таких зарядках возрастает до 32 Ампер. Второй режим способен обеспечить 6-8 часов зарядки батареи.

Mode 3

Более мощная (43 кВт) зарядка такого типа отдает трёхфазный переменный ток силой 63А. Устройства этого типа обеспечивают полный заряд батареи за 3-4 часа.

Mode 4

Быстрая зарядка этого типа использует постоянный ток мощностью 240 кВт с напряжением 600 В при силе до 400 А. Для заполнения 80% ёмкости аккумулятора обычного электрокара требуется не более получаса времени.

Чаще всего можно встретить зарядки 1 и 2 уровня. Некоторые PHEV-автомобили не поддерживают зарядку от устройства третьего и четвертого режима в связи с недостаточным объемом батареи, за исключением Mitsubishi Outlander PHEV, который способен поддерживать скоростные типы зарядных устройств.

Типы разъемов зарядных кабелей

Так же, как не существует единого стандарта для зарядных устройств, нет единого разъема для всех электромобилей. Будущему владельцу электромобиля следует знать несколько основных европейских и американских разъемов. В последнее время на многих европейских заправках появились разъемы для американских автомобилей и наоборот.

Читайте также: Как стать уверенным в электромобиле и перестать беспокоится о запасе хода?

Европейские разъемы для зарядных устройств

Mennekes

Разработчик электротехники компания Mennekes в 2013 году внедрила новый стандарт разъемов в Европе. Это тип соответствует зарядке Type 2 и считается самым распространённым в Европе. Он используется для однофазной сети мощностью до 7,4 кВт. или для трёхфазной с напряжением 380В с поддержкой мощности заряда до 43,5 кВт. Модифицированная в США версия этого разъема позволяет также заряжать автомобили Tesla с мощностью 120 кВт. Самыми распространенными автомобилями, использующими такой тип разъема являются:

  • Renault Zoe,
  • Hyundai Ioniq,
  • Opel Ampera-e,
  • Tesla Model S и Model X.
Читайте также  Что делать если пишет нет подключения к Интернету защищено?

CHAdeMО

Этот стандарт “быстрых” зарядных станций был принят в 2010 году после объединения автоконцернов Nissan, Mitsubishi, Subaru и Toyota в ассоциацию под названием CHAdeMO — CHArge de MOve (от фр. “заряжай для движения”). Автомобили, выпущенные до 2018 года могли подключаться к зарядным станциям постоянного тока мощностью 50-200 кВт для заполнения батареи на 80% за полчаса. После 2018 года ассоциация “апгрейдила” стандарт до версии CHAdeMO 2.0, позволяющей распоряжаться мощностью до 400 кВт. Аналогичный объем 80% доступен водителю всего за 10-15 минут.

Наиболее популярные электромобили этих брендов, использующих этот тип зарядки в Европе:

  • Nissan Leaf 1.1,
  • Citroen ё-Berlingo,
  • Renault ZOE ZE,
  • Smart ED,
  • Mercedes-Benz B250E.

Американские разъемы для зарядных устройств

SAE J1772

Это тип разъема был создан в 2009 году американскими разработчиками из организации SAE, которые создали 5-точечный разъём стандарта J1772 для зарядки электромобилей от однофазной бытовой сети переменного тока 220В мощностью до 7,2 кВт. Вначале формат был широко распространен в США и Японии, однако после выпуска некоторых европейских моделей появился в Европе. После обновления до уровня SAE Combo 3 типа такие зарядные устройства могут заряжать электрокары током мощностью от 90 до 240 кВт при силе 450 и 600 А. Этот стандарт разъемов используют такие популярные электрокары и гибриды:

Audi A3 Sportback E-tron,

BMW i3,

BMW i8,

BMW X5e (F15),

Mercedes Benz S500e (W222)

Porsche Cayenne Hybrid

CCS Combo

Этот универсальный стандарт разъёмов для быстрой зарядки по праву можно считать глобальным и набирающим наибольшую популярность в мире, поскольку поддерживается крупными мировыми автоконцернами, создавшими сеть Ionity: VW Group, General Motors, BMW AG, Ford Motor Company, Daimler AG, Stellantis (Fiat Chrysler Group + PSA Peugeot Citroen Opel Group).

CCS Combo первого поколения поддерживает мощность до 80 кВт при силе тока до 400В, второго – до 350 кВт (до 1000 В). Преимущество этого типа разъема в том, что он позволяет заряжать аккумуляторы как от бытовой зарядки, так и с помощью внешнего высокоскоростного устройства. Наиболее распространенными автомобилями с таким разъемом являются:

  • Volkswagen ID-3,
  • KIA Niro,
  • Mercedes EQC;
  • Porsche Taycan,
  • Audi e-tron.

Альтернативные способы зарядки электромобилей

Последние 4-5 лет производители разрабатывают беспроводные зарядные устройства. Инженеры развивают эту технологию одновременно в двух направлениях. Это стационарные зарядные боксы, которые можно размещать в гаражах или на парковке и динамические устройства, подзаряжающие автомобиль на ходу.

Беспроводные зарядки уже внедряются в транспортную инфраструктуру разных стран. В Лондоне эту технологию использует общественный транспорт, а в Сеуле устанавливают беспроводные зарядки мощностью 100 кВт на общественных парковках.

На сегодня такой тип зарядных устройств является самым дорогим и носит скорее характер экспериментального проекта.

Со временем с ростом количества электромобилей на дорогах будет расширена инфраструктура зарядных станций. Одновременно с появлением более емких батарей и более производительных электромоторов останется не более трех стандартов зарядок, каждый из которых будет выполнять отдельную функцию.

Тариф составляет от 0,73 до 0,84 грн за эквивалент 1 км пробега Nissan Leaf.

Сеть Autoenterprise

Тарифы: 10 кВт — 1 грн/мин, CHAdeMO 20 кВт — 2 грн/мин, CHAdeMO 40 кВт — 4 грн/мин.

В зависимости от типа зарядной станции существуют такие показатели мощности:

  • Type 1 — 7,2 кВт,
  • Type 2 — 20-22 кВт,
  • CHAdeMO и CCS Combo — 50 кВт

Оптимальная зарядная станция должна быть совместима по разъему с автомобилем.

Как и с помощью чего заряжать электромобиль

Для начала рассмотрим какие существуют типы зарядных станций для электромобилей: это ультрабыстрые станции, быстрые и медленные. Эти типы зарядных станций различаются мощностью и, следовательно, скоростью с которой они могут зарядить электромобиль. Мощность зарядных станций указывается в киловаттах (кВт). Каждый тип зарядных станций имеет свой тип разъёмов, которые, в свою очередь, делятся по рабочей мощности и типу рабочего тока (переменный или постоянный). Ниже мы расскажем об основных типах зарядных станций и разъёмов, которые сейчас можно встретить в России.

Ультрабыстрые зарядные станции

Это стационарные станции с большой выдаваемой на заряд мощностью и с не съёмными зарядными кабелями. В группу ультрабыстрых станций входят как зарядные станции постоянного, так и переменного тока. Есть три условных больших группы:

  • Зарядные станции постоянного тока с мощностью 50 кВт (два типа разъёмов).
  • Зарядные станции переменного тока с мощностью 43 кВт (один тип разъёма).
  • Tesla Supercharger — зарядная станция постоянного тока с мощностью 120 кВт.

Ультрабыстрые зарядные станции на сегодняшний день — самый быстрый способ зарядить электромобиль. Их можно встретить на автомагистралях или крупных публичных парковках. Такие станции обеспечивают постоянный или переменный ток большой мощности и могут зарядить автомобиль до 80% за 20-40 минут. В большинстве случаев ультрабыстрые станции отключаются, когда аккумулятор электромобиля заряжен примерно на 80%, чтобы защитить батарею и продлить срок её службы.

Ультрабыстрая зарядка может использоваться только на тех автомобилях где возможность её применения предусмотрена изначально и присутствует специализированный тип зарядного разъёма.

Зарядные станции с разъёмом CHAdeMO обеспечивают мощность заряда до 62,5 кВт при постоянном токе 125 А и напряжении 500 В. Следом за ними идут разъёмы Combined Charging System (CCS) с мощностью заряда 50 кВт. и также работающие с постоянным током. Оба этих типа разъемов обычно заряжают электромобиль до 80% за полчаса в зависимости от емкости аккумулятора и начального уровня заряда.

Помимо разъёмов для ультрабыстрых зарядных станций постоянного тока существует ещё один разъём для трёхфазного переменного тока — Type 2, способный обеспечивать мощность заряда 43 кВт. (при трёхфазном токе 63 А). Ультрабыстрые зарядные станции переменного тока заряжают электромобили за то же время, что и аналогичные станции постоянного тока в зависимости от емкости батареи и начального уровня заряда аккумулятора.

Отдельно в классе ультрабыстрых зарядных станций стоит разъём Tesla Type 2 на станциях Tesla Supercharger. Эти станции способны выдавать до 120 кВт. К сожалению, воспользоваться такой мощностью могут только владельцы автомобилей Tesla.

Класс ультрабыстрых зарядных станций стремительно развивается и в ближайшие 3-5 лет запланировано увеличение мощности станций сначала до 150 кВт, а затем до 350 кВт, что значительно сократит общее время зарядки.

Список электромобилей с возможностью ультрабыстрой зарядки и разъёмами типа CHAdeMO, включают в себя Nissan Leaf, Mitsubishi Outlander PHEV и Kia Soul EV. Список CCS-совместимых модели включает BMW i3, VW e-Golf и Hyundai Ioniq Electric. Tesla Model S и Model X могут использовать исключительно зарядные станции Supercharger, и единственная модель, которая в настоящее время может заряжаться от ультрабыстрой станции переменного тока с разъёмом Type 2 — это Renault Zoe.

Быстрые зарядные станции

Быстрые зарядные станции выдают в электромобиль одно- или трёхфазный переменный ток. На некоторых из них зарядные кабели являются элементом станции, на других предусмотрена только розетка, а кабель автовладельцу надо использовать свой. Как и с ультрабыстрыми станциями, быстрые зарядные станции также можно разделить на три типа:

  • Зарядные станции мощностью 7 кВт (три типа разъёмов).
  • Зарядные станции мощностью 22 кВт (один тип разъёма).
  • Зарядная станция 11 кВт — с разъёмом Tesla.

Быстрые зарядные станции заряжают электромобиль одно- или трёхфазным переменным током и имеют мощность 7 кВт или 22 кВт (однофазные или трехфазные) при силе тока 32 А. Время зарядки на таких станциях индивидуально и зависит от мощности бортового зарядного устройства электромобиля, но, ориентировочно, зарядная станция с мощностью 7 кВт подзаряжает совместимый с ней электромобиль с аккумулятором 30 кВт⋅ч за 3-5 часов, а зарядное устройство мощностью 22 кВт заряжает совместимых с ней электромобиль за 1-2 часа.

При этом решающим фактором будет мощность бортового зарядного устройства электромобиля. Так как если оно рассчитано на 7кВт, то подключение к более мощной зарядной станции не приведёт к ускорению заряда. Потребляемая мощность будет ограничена мощностью встроенного зарядного устройства. Подавляющая часть электромобилей на российском рынке имеет встроенное зарядное устройство 3,5 кВт реже 7кВт. Например, Nissan Leaf со стандартным встроенным зарядным устройством 3,3 кВт будет потреблять максимум 3,3 кВт, даже если быстрая зарядная станция может выдавать 7 кВт или 22 кВт.

Разъёмы Tesla и соответствующие зарядные станции обеспечивают мощность 11 или 22 кВт, но предназначены только для электромобилей Tesla.

Быстрые зарядные станции, как правило, можно найти в местах долговременных парковок, таких как автостоянки, супермаркеты или развлекательные центры, где автовладельцы оставляют свои электромобили на несколько часов.

Почти все электромобили и подзаряжаемые гибриды способны заряжаться от быстрых зарядных станций. На сегодняшний день разъём Type 2 является самым распространённым стандартом для зарядных станций и электромобилей, поставляющихся в Россию.

Медленные зарядные станции

Большинство медленных зарядных станций рассчитаны на мощность до 3 кВт и есть некоторые модели, способные выдавать 6 кВт. Так как медленные зарядные станции выдают переменный ток, то, как и в случае с быстрыми зарядными станциями, время зарядки электромобиля варьируется в зависимости от мощности бортового зарядного устройства. Для примера: полная зарядка устройства мощностью 3 кВт обычно занимает 6-12 часов. Медленные зарядные станции бывают стационарными или переносными.

Медленная заряд — очень распространенный метод зарядки электромобилей, который используется многими владельцами дома в течение ночи. Тем не менее, применение медленных зарядных станций не обязательно ограниченно домом. Медленные зарядные станции с успехом используют и на общественных парковках или возле офисов, где электромобиль находится продолжительное время. Из-за более длительного времени, требующегося для заряда аккумулятора, медленные зарядные станции в качестве общественных точек заряда встречаются гораздо реже быстрых.

Хотя медленное зарядное устройство может быть включено в обычную розетку, из-за более высоких постоянных нагрузок и длительного времени использования, настоятельно рекомендуется устанавливать для таких станций отдельную силовую розетку с отдельным автоматическим выключателем.

Разъемы и кабели

На ультрабыстрых зарядных станциях, в основном, используются разъемы CHAdeMO, CCS или Type 2. В быстрых и медленных зарядных станциях обычно используются розетки Type 2, Type 1 или Commando.

На электромобилях европейских моделей (Audi, BMW, Renault, Mercedes, VW и Volvo), как правило, устанавливаются розетки Type 2 или совместимые с ними CCS-2, в то время как азиатские производители (Nissan и Mitsubishi) предпочитают устанавливать на своих моделях розетки Type 1 и CHAdeMO как по отдельности, так и обе розетки одновременно. Исключение из этого списка составляют только Hyundai Ioniq Electric и Toyota Prius Plug-In.

Многие электромобили поставляются как с зарядным кабелем, так и с медленной переносной зарядной станцией. Обычно, кабель имеет один разъём идентичный типу разъёма на электромобиле, а другой либо Type 1 либо Type 2 в зависимости от региона для которого предназначается электромобиль. Переносная зарядная станция имеет с одной стороны разъём идентичный типу розетки на электромобиле, а с другой стороны обычный бытовой разъём SHUKO. Что позволяет заряжать электромобиль практически в любом месте, где доступна электросеть.

Читайте также  Как узнать на кого зарегистрирован номер телефона теле2?

Например, Nissan Leaf, поставляется с медленной зарядной станцией с разъёмами SHUKO-Type 1 и кабелем Type 2-Type 1. Renault Zoe имеет другой комплект зарядных кабелей и поставляется с зарядной станцией SHUKO-Type 2 или кабелем Type 2-Type 2.

Разъёмы переменного тока

Разъёмы постоянного тока

Промышленный Commando (IEC 60309)

Японский JEVS (CHAdeMO)

Американский Type 1 (SAE J1772)

Европейский Combined Charging System (CCS-2 or ‘Combo’)

Европейский Type 2 (Mennekes, IEC 62196)

Фирменный разъём Tesla

Источник: Компания «АСберг АС»

Следите за нами в Life-режиме в Instagram
Деловые поездки, офисная жизнь, актуальные разработки в мире электротехники

FAQ электрофоба /накипело/

С момента приобретения электромобиля, я постоянно сталкиваюсь с некомпетентностью людей по теме эксплуатации электромобилей и связанных с этой темой заблуждений и стереотипов, приводящих к многочисленным спорам. В данной записи я постараюсь развёрнуто ответить на многие спорные вопросы и опровергнуть большинство распространённых заблуждений.

«Аккумуляторная батарея стоит значительную часть стоимости электромобиля и имеет маленький ресурс. Через несколько лет аккумулятор потеряет свою ёмкость из-за деградации и вся экономия на топливе выльется в дорогостоящую замену батареи.»

— Аккумуляторные батареи в современных электромобилях имеют достаточно продолжительный срок службы, не уступающий сроку службы классических ДВС. Например, среднестатистическая потеря ёмкости литий-ионной аккумуляторной батареи Tesla составляет всего лишь в пределах 3-5% на 100000 км пробега. Литий-полимерные аккумуляторные батареи производства LG Chem, применяемые в электрокарах Hyundai и некоторых других автопроизводителей, также не уступают по ресурсоёмкости. Как пример, при бережной эксплуатации с минимальным количеством быстрых зарядок, такая батарея в Hyundai Ioniq Electric может сохранять не менее 98% своей ёмкости даже на пробегах более 100000 км.
Исключением и историческим аутсайдером остаётся только компания Nissan, экономящая на технологическом развитии и по настоящее время использующая технически несовершенные аккумуляторные батареи на устаревшей химии, склонные к ускоренной деградации под влиянием разных факторов, в том числе, обусловленных неудачной конструкцией корпуса батареи с отсутствующей терморегуляцией. Но даже в этом случае, замена батареи за эксплуатационный период по стоимости не превысит затрат на горюче-смазочные материалы для авто аналогичного класса с двигателем внутреннего сгорания.

«Аккумуляторная батарея под днищем автомобиля представляют большую опасность возгорания или взрыва при повреждении в случае ДТП»

— Такой стереотип зародился несколько лет назад, после случаев возгорания первых Tesla Model S в серьёзных автокатастрофах. Применяемые же в настоящее время аккумуляторные батареи обычно тестируют на деформацию с повреждением внутренней структуры ячеек, замыкание токоведущих шин, нагрев до 200-300°С и 120-150% перезаряд. Также в сети есть множество любительских экспериментов, где люди пробивают гвоздём, перерубают топором, замыкают и нагревают аккумуляторные сборки от популярных моделей электрокаров, типа Tesla или Nissan Leaf, в результате которых ничего катастрофического с ними не происходит.


«Запас хода электромобилей слишком мал для нормальной эксплуатации. На них можно ездить только вокруг дома на близкие расстояния. Электромобиль это баловство, его не возможно рассматривать в качестве единственного автомобиля в семье.»

— На практике, запас хода многих современных электромобилей составляет от 200 до 400+ км пробега на одной зарядке. Обычно этого с лихвой хватает для всех повседневных задач среднестатистического городского жителя, если только вы не круглосуточный таксист и не междугородний дальнобойщик. Но с развитием инфраструктуры быстрых зарядных станций, загородные и междугородние путешествия на электромобиле также становятся вполне реальны.

«Зимой аккумуляторная батарея электромобиля замерзает и теряет ёмкость, а из-за необходимости отопления салона электричеством, запас хода сокращается в 2-3 раза, что приводит к невозможности эксплуатации в регионах с холодным климатом.»

— Подобное справедливо только для старых электромобилей, типа первого поколения Nissan Leaf, где использовалась не морозостойкая химия аккумуляторных ячеек и калорифер отопителя салона с низким КПД.
Литий-полимерные батареи в современных электромобилях обычно морозоустойчивые, с эксплуатационной температурой до -35°С без серьёзных ограничений, и с ограничением выходной мощности при более низких температурах. Также многие батареи оборудованы дополнительной системой внутреннего подогрева во время зарядки от внешней сети, для сохранения оптимальных рабочих характеристик. Литий-ионные батареи Тесла более термозависимые и плохо переносят морозы, но они имеют развитую систему контроля температуры, поддерживающую оптимальную температуру не только во время зарядки, но и во время стоянки на холоде без подключения к внешней сети. Расход энергии на нагрев в таком случае компенсируется большим запасом ёмкости.
Система климат-контроля многих электромобилей, помимо мощного калорифера для быстрого прогрева салона, также оборудована так называемым тепловым насосом. Это энергоэффективный реверсивный кондиционер с высоким КПД, способный работать как на охлаждение, так и в обратную сторону, на нагрев, попутно отбирая тепло, выделяемое тяговым электродвигателем и системой преобразования энергии. Таким образом, запас хода электромобиля зимой сокращается всего лишь на 20-30% в сравнении с летним.

«Обычный автомобиль можно заправить топливом за 5 минут и ехать дальше, а зарядка электромобиля занимает несколько часов и вызывает массу неудобств.»

— Кроме 5 минут, затраченных непосредственно на саму заправку, также следует учитывать время на поездку к АЗС, зачастую находящимся немного в стороне от повседневных маршрутов. К тому же, приходится периодически планировать свой визит на АЗС по мере опустошения топливного бака, ведь никто из автомобилистов не заправляет на четверть или половину опустошённый бак, поддерживая его постоянно в полном состоянии. В случае с электромобилем всё намного проще. Подавляющее большинство владельцев электромобилей вообще не тратят своё личное время на зарядку. Хоть процесс зарядки и занимает довольно продолжительный период, обычно это происходит во время ночной или дневной стоянки, когда необходимость в использовании электромобиля отсутствует. Таким образом, владелец электромобиля постоянно имеет «полный бак» электричества, при этом совершенно не затрачивая своё время на ожидание зарядки. Если же, по какой-то причине, запаса хода не хватает для продолжительных поездок, на помощь приходят быстрые зарядные станции, зарядка на которых занимает 15-30 минут. Правда, к сожалению, инфраструктура таких зарядных станций в «нефте-газовой державе», по понятным причинам, развивается очень не охотно. Не в пример более развитым странам Европы и Северной Америки, где развитие идёт полным ходом, и всячески поддерживается и стимулируется государством.

«Электромобили это маркетинговый развод, а производство и утилизация аккумуляторных батарей гораздо вреднее для экологии, чем эксплуатация авто с классическими ДВС.»

— Основные материалы для производства тяговых аккумуляторных батарей, вызывающие споры у диванных «борцов за экологию», это литий и кобальт.
Действительно, добыча лития связана с откачкой и выпариванием гигантских объёмов воды из недр глубоководных соляных озёр, что наносит урон экосистеме, но ничуть не больший, чем добыча ископаемой нефти, с присущими ей разливами и загрязнением огромных участков земли и водных территорий. Кроме того, литий в массе добывают далеко не только для производства аккумуляторных батарей. Литий широко применяется в металлургии. В чёрной и цветной металлургии литий используется для раскисления и повышения пластичности и прочности сплавов. Карбонат лития является важнейшим вспомогательным веществом при выплавке алюминия, и его потребление растёт с каждым годом пропорционально объёму мировой добычи алюминия. Соли лития обладают нормотимическими и другими лечебными свойствами, потому они находят применение в медицине. Стеарат лития («литиевое мыло») используется в качестве загустителя для получения пастообразных высокотемпературных смазок машин и механизмов. Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).
Аналогичная ситуация и с кобальтом. Основное применение кобальта в промышленности — изготовление специальных сплавов и сталей. Легирование стали кобальтом повышает её твердость, износо- и жаростойкость. Сплавы кобальта и хрома получили собственное название стеллит. Они обладают высокой твёрдостью и износостойкостью. Также благодаря коррозионной стойкости и биологической нейтральности некоторые стеллиты применяются в протезировании. Кобальт применяется при изготовлении химически стойких сплавов. Соединения кобальта широко применяются для получения ряда красок и при окраске стекла и керамики. Кобальт применяется как катализатор химических реакций в нефтехимии, промышленности полимеров и других процессах.
Как видно, литий и кобальт массово используется в промышленности и производство аккумуляторных батарей это лишь некоторая часть от общего объёма их добычи.
Про проблемы утилизации батарей в наших реалиях это вообще полная чушь, так как никто не будет просто так выбрасывать годные остатки. В подавляющем большинстве случаев, изношенные аккумуляторные ячейки перебираются, отбраковываются, из годных собираются батареи для дальнейшей эксплуатации авто, а непригодные в автомобилях отправляются служить в источники аккумулирования энергии набирающих популярность систем «умных домов», где соотношение удельной ёмкости не так важно. Тем не менее, способы экологически-чистой переработки отработавших свой ресурс аккумуляторных батарей уже существуют и успешно применяются в развитых странах.

«Электромобили не экологичны, потому что для выработки электроэнергии на электростанциях всё также сжигают ископаемое топливо.»

Даже если для выработки электроэнергии и используются электростанции на ископаемом топливе, то электромобиль позволяет переместить выбросы от затраченной на своё передвижение энергии из густонаселённых городов в удалённые зоны расположения электростанций, где вред от этих выбросов оказывает наименьшее влияние на человека. Опять же, при получении электроэнергии из возобновляемых источников на гидроэлектростанциях, ветрогенераторах или солнечных панелях, негативное влияние на экологию от эксплуатации электромобиля практически отсутствует.

Это были ответы на основные заблуждения, вызывающие многочисленные споры, но запись будет пополняться, по мере поступления новых вопросов или спорных утверждений.
Будущее электротранспорта уже наступило, его осталось лишь правильно принять.

Зарядки для электромобилей: как это работает с точки зрения инженера и пользователя

Завтра стартует онлайн-митап про электромобили и силовую электронику — мы об этом уже рассказывали в новостях на Хабре. А сегодня мы погрузимся в эту тему и расскажем, чем мир электротранспорта может заинтересовать инженеров-разработчиков и руководителей проектов: узнаем, как работают зарядки для электрокаров, разберем их внутренности с точки зрения харда и софта, а в конце — посмотрим на прогнозы экспертов.

С появлением электромобилей двигатели внутреннего сгорания с сотнями движущихся частей уступают место электрическим трансмиссиям, в которых таких движущихся частей менее двадцати. Инновации на этом новом рынке зачастую касаются трех главных компонентов:

Зарядные станции и батареи.

Читайте также  Как выходит из строя свеча?

Инженеры работают над тем, чтобы увеличить дальность хода авто, повысить его безопасность, срок службы и, конечно, надежность. Самые интересные трансформации сейчас происходят с зарядками и силовыми устройствами, поэтому на них мы и сфокусируемся на завтрашней встрече. Расскажем про силовые устройства нового поколения на основе карбида кремния (SiC), которые сейчас захватывают рынки электромобилей и растут на 27% в год. Узнаем, как развивается инфраструктура зарядных станций в России. А в рамках этой хабрастатьи давайте разберемся с тем, что из себя представляет система зарядных станций для авто.

На наши вопросы ответит Андрей Гольмак — один из лучших мировых специалистов в этой теме. Андрей закончил минский факультет радиофизики и электроники в БГУ, занимался embedded-разработкой, а потом переехал в Канаду и присоединился к небольшой компании, которая одной из первых в мире начала работать с зарядками для электромобилей. В итоге эта компания стала лидером канадского рынка и второй в США. Мы пообщались с Андреем по Zoom и делимся с вами тезисами:

— Что сейчас в целом происходит на рынке зарядок для авто?

— Тем, кто только начинает знакомиться с этой темой, может показаться, что зарядка для электромобиля — это что-то типа зарядки для телефона. На на самом деле это сложная экосистема.

Пока этот рынок незрелый. Если кто-то из компаний или инженеров хочет войти в эту отрасль, то сейчас — лучшее время. Меняется вся инфраструктура, сам автомобиль и зарядки, трансформируются поставщики электроэнергии и инфраструктура городов, рождаются интересные проекты. Эти изменения затронут всех в конечном итоге.

Сейчас на рынке зарядок сформировались три сегмента: домашний, частный и общественный. 60% зарядок сейчас составляет домашнее использование, когда пользователи устанавливают зарядку у себя дома, а если есть возможность — в паркинге своего многоквартирного дома.

Частные зарядки — это зарядные станции частных компаний. Например, банк устанавливает зарядки для своих сотрудников, у которых есть свои электромобили. Либо компании, которые доставляют товары Amazon: у них есть парк автомобилей, и они устанавливают для них сеть зарядок в разных городах.

Общественные зарядки доступны для всех, они располагаются в городах и вдоль автотрасс. В качестве аналогии можно привести сеть операторов мобильной связи: ты должен подписаться на определенный тариф, чтобы пользоваться услугами.

Зарядная станция для авто Nissan Leaf, представленная на автошоу в Загребе в 2018 году

— А чем отличаются эти три сегмента — домашний, частный и общественный?

— Начнем с домашнего сегмента, где с точки зрения железа оборудование может быть проще. Это так называемые зарядки второго уровня. Владельцу такой зарядки не нужно как-то специально распределять доступ к пистолету. Основная задача — зарядить свое авто, а статистика, которая потом приходит на смартфон, уже не так важна.

Но дело в том, что в Северной Америке стоимость электроэнергии может варьироваться в зависимости от времени суток — поставщики электричества пытаются компенсировать пиковые нагрузки утром и вечером за счет повышения тарифов. Поэтому сейчас домашние зарядки интегрируются в smart grid, систему управления электроэнергией. Домашние зарядки с такой функцией можно включать изначально на маленьком токе, а ночью, когда стоимость электроэнергии ниже, зарядка автоматически включается на полную мощность. На полную зарядку автомобиля уходит от 6 до 8 часов.

Интеграция со smart grid, конечно, усложняет простейший вариант зарядки: требуется подключение к серверу, а сам сервер подключается к поставщику электроэнергии — так контролируется максимальный ток на зарядках в разное время. Это занятная инженерная задача, но есть еще более интересные проекты: например, коммуникационный интерфейс vehicle to grid (ISO15118). Согласно этой концепции, авто может не только заряжаться, но и отдавать электричество — питать дом, когда электричество дорогое. Такой power bank на колесах. Более того, владелец такого устройства может продавать электроэнергию — возвращать ее в сеть и получать за это деньги.

— Что что из себя представляет зарядка с точки зрения железа, hardware-начинки?

— Есть три уровня зарядок. Зарядки первого уровня и правда похожи на зарядки для телефона: подключаем любой розетке на 110—120 вольт, 6—8 ампер.

Для второго уровня (наиболее распространенного) требуется 220—240 вольт с переменным током 30 ампер максимум. Автомобиль с такой зарядкой берет от 6 до 30 ампер.

Рассмотрим, что есть внутри зарядки для домашнего использования:

плата преобразователя энергии (GFCI), которая преобразует напряжение, в ней встроены разные типы защиты;

плата контроля коммуникации с автомобилем, зачастую в зарядках такого уровня используется аналоговый интерфейс (для коммуникации используется сигнал, который называется pilot signal);

коммуникационная плата, которая может иметь свой модемом с wi-fi или кабелем.

Зарядки для частного и публичного использования дополнительно содержат встроенную защиту для ограничения доступа и экраны для общения с пользователем. Также у них может быть контроллер для интеграции в систему управления зданием.

Зарядки третьего уровня для офисов и общественных мест — это такие большие «холодильники» вдоль автотрассы, в больших городах и на заправках. Они достаточно сложны технологически: 100—150 киловатт, сотни ампер, 480 вольт. Это устройства с постоянным током, так называемые DC-зарядки. На полную зарядку авто уходит от 10 до 30 минут максимум. Начинка у них аналогичная, есть графический интерфейс.

QC45 (Level 3) — станция зарядки по стандартам CHAdeMO и CCS. Подходит для электрокаров Nissan, Chevrolet, BMW, Ford, Tesla и др.

Отличительный компонент DC-зарядок — дополнительный power-модуль для преобразования тока и контроля. И когда речь идет о сотнях ампер, сам кабель зарядки довольно тяжелый, не всем хватает сил подключить его. Но Tesla, например, использует водяное охлаждение кабеля, поэтому он у них достаточно легкий.

С точки зрения коммуникации зарядки второго и третьего уровня схожи — в них используются те же модемы для подключения зарядки к серверу. Причем уже сейчас появляются новые задачи для компаний в этой сфере: модемы в старых моделях больше не могут поддерживать нужную скорость и количество данных, которое переносится от зарядки к серверу.

— А почему старых модемов для передачи данных уже недостаточно? За счет чего растет объем этих данных?

Возьмем в качестве примера общественные зарядки: в них может быть установлена простая почасовая оплата, а может быть динамическая, с учетом скидки в зависимости от потребленной электроэнергии, времени суток или рекламных акций конкретных автопроизводителей. Соответственно, возрастает и сложность коммуникации.

Еще один пример — проекты по профилактическому (предиктивному) обслуживанию, когда к зарядкам подключают искусственный интеллект, который по своим алгоритмам предсказывает необходимость обслуживания.

— Какие интерфейсы для передачи данных используются чаще всего и почему?

Используются два типа интерфейса: между зарядкой и модемом + между модемом и сервером. А сами модемы бывают встраиваемые и внешние.

Внешние модемы в основном используются для частных и общественных решений, когда нужно подключить много зарядок к одному модему.

Интерфейсы между зарядкой и модемом — зачастую wi-fi или ZigBee. ZigBee — наиболее эффективный, но пропускная способность у него такая же, как у wi-fi, и ее не всегда достаточно. Wi-fi проще, но не всегда удобен для установки в общественных местах (на улицах или в паркингах, где качество сигнала не всегда хорошее).

Интерфейс между модемом и сервером достаточно простой, это прямое подключение к интернету либо сотовая связь с сим-картой. Разработчики ушли от кабелей и ethernet, потому что зарядки устанавливаются на улице, где неудобно прокладывать кабель под землей — намного проще использовать симку, которая стала доступна по стоимости (несколько долларов в месяц для ИТ-решений).

— А теперь про инфраструктуру: чем отличается заправка для электромобилей от заправок для привычных авто с бензиновым двигателем?

Для зарядки электрокара можно использовать дополнительное приложение и указать в нем тип своего автомобиля. Такое приложение подскажет, как спланировать путь, где зарядиться и сколько это будет стоить. И каждый из этих сервисов — логистика, интеграция с платежами — это отдельные инженерные задачи.

На уровне B2C рынок развивается и предлагает свои плюшки: бонусные программы за использование определенных зарядок. С точки зрения В2В ситуация тоже интересная: если сравнить с мобильной связью, то тут есть возможность обмениваться данными у разных операторов (компаний-поставщиков).

Компактная зарядная станция Sputnik российской компании Portal Energy

— А когда уже сами автомобили будут общаться с зарядками?

Сегодня цифровое общение реализовано только на зарядках третьего уровня. Интерфейс между зарядкой и авто работает примерно так: электромобиль говорит «я готов заряжатся, мне нужно 15 ампер», а зарядка определяет максимальное количество тока, которое авто может потребить.

Тот же стандарт ISO15118 идет с функцией plug-in-charge, благодаря которой автомобиль сам авторизуется в системе, т.е. пользователю не обязательно проводить карточкой по зарядке, чтобы войти в свой аккаунт и получать электроэнергию.

Сейчас самая сложная коммуникация реализована на уровне «зарядка-сервер», а не между авто и зарядкой.

— А как вообще можно подключиться к подобным проектам по разработке инфраструктуры для электротранспорта?

Сложно предвидеть, что будет с этой индустрией через 5 лет. Сейчас можно экспериментировать с разными типами клиентов: работать с банками, с городами, с компаниями со своим парком электромобилей. Если сфокусироваться на решениях проблем клиентов, то ты автоматически будешь двигать индустрию в правильном направлении. А в сборе требований работает стандартная схема: продукт-менеджеры общаются с клиентами, записывают их проблемы, а потом вместе с инженерной командой приоритезируют и выбирают те, решение которых даст максимальный эффект не только в деньгах, но также в новых клиентах и партнерах.

За рамками нашего общения остался самый интересный вопрос для читателей Хабра: а как обстоят дела с инфраструктурой зарядок в России? Об этом мы и поговорим завтра на митапе. Свои вопросы на тему электротранспорта и силовой электроники можно оставлять прямо в комментариях. Мы адресуем их спикерам в прямом эфире, который будет открыт для всех зарегистрированных участников.

А пока поделимся обнадеживающим прогнозом, который несколько дней назад опубликовала британская консалтинговая фирма IDTechEx: в течение следующего десятилетия рынок электрокаров вырастет на 25% и продолжит рост во всех регионах мира в течение 20 лет как минимум. Так что для тех, кто хочет войти в эту отрасль сейчас — и правда лучшее время.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: